当前位置:舍宁秘书网 > 专题范文 > 教案设计 > 高中数学教科书教案范本七篇【完整版】

高中数学教科书教案范本七篇【完整版】

时间:2022-11-29 08:55:02 来源:网友投稿

下面是小编为大家整理的高中数学教科书教案范本七篇【完整版】,供大家参考。

高中数学教科书教案范本七篇【完整版】

高中数学教科书教案范文七篇

数学家也研究纯数学,即数学本身,并不针对任何实际应用。虽然很多工作都是从数学的研究开始的,但是后面可能会找到合适的应用。下面是小编为大家带来的高中数学教科书教案范文七篇,希望大家能够喜欢!

教材分析:

教科书以物体受力做功为背景,引出向量数量积的概念,功是一个标量,它用力和位移两个向量来定义,反应在数学上就是向量的数量积。

向量的数量积是过去学习中没有遇到过的一种新的乘法,与数的乘法既有区别又有联系。教科书通过“探究”,要求学生自己利用向量的数量积定义推导有关结论。这些结论可以看成是定义的直接推论。

教材例一是对数量积含义的直接应用。

学情分析:

前面已经学习了向量的概念及向量的线性运算,这里引入一种新的向量运算——向量的数量积,教科书以物体受力做功为背景引入向量数量积的概念,既使向量数量积运算与学生已有知识建立了联系,又使学生看到数量积与向量模的大小有及夹角有关,同时与前面的向量运算不同,其计算结果不是向量而是数量。

三维目标:

(一)知识与技能

1、学生通过物理中“功”等实例,认识理解平面向量数量积的含义及其物理意义,体会平面向量数量积与向量投影的关系。

2、学生通过平面向量数量积的3个重要性质的探究,体会类比与归纳、对比与辨析等数学方法,正确熟练的应用平面向量数量积的定义、性质进行运算。

(二)过程与方法

1、学生经历由实例到抽象到抽象的的数学定义的形成过程,性质的发现过程,进一步感悟数学的本质。

(三)情感态度价值观

1、学生通过本课学习体会特殊到一般,一般到特殊的数学研究思想。

2、通过问题的解决,培养学生观察问题、分析问题和解决问题的实际操作能力;培养学生的交流意识、合作精神;培养学生叙述表达自己解题思路和探索问题的能力.

四、教学重难点:

1、重点:平面向量数量积的概念、性质的发现论证;

2、难点:平面向量数量积、向量投影的理解;

五、教具准备:多媒体、三角板

六、课时安排:1课时

七、教学过程:

(一)创设问题情景,引出新课

问题:请同学们回顾一下,我们已经研究了向量的哪些运算?这些运算的结果是什么?

新课引入:本节课我们来研究学习向量的另外一种运算:平面向量的数量积的物理背景及其含义

新课:

1、探究一:数量积的概念

展示物理背景:视频“力士拉车”,从视频中抽象出下面的物理模型

背景的第一次分析:

问题:真正使汽车前进的力是什么?它的大小是多少?

答:实际上是力 在位移方向上的分力,即 ,在数学中我们给它一个名字叫投影。

“投影”的概念:作图

定义:| |cos(叫做向量 在 方向上的投影.投影也是一个数量,不是向量;

2、背景的第二次分析:

问题:你能用文字语言表述“功的计算公式”吗?

分析:
用文字语言表示即:力对物体所做的功,等于力的大小、位移的大小、力与位移夹角的余弦这三者的乘积;功是一个标量,它由力和位移两个向量来确定。这给我们一种启示,能否把“功”看成是这两个向量的一种运算结果呢?

平面向量数量积(内积)的定义:已知两个非零向量 与 ,它们的夹角是θ,则数量| || | 叫 与 的数量积,记作 · ,即有 · = | || | (0≤θ≤π).并规定 与任何向量的数量积为0.

注:两个向量的数量积是一个实数,不是向量,符号由cos 的符号所决定.

3、向量的数量积的几何意义:

数量积 · 等于 的长度与 在 方向上投影| |cos(的乘积.

一、教材分析

1、教材的地位和作用

本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在学习随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的 。古典概型是一种特殊的、最基本的概率模型,它的引入避免了大量的重复试验,而且得到的是概率的精确值,有利于学生理解概率的概念和概率值的存在,也为后面学习几何概型作铺垫。同时学习了本节内容,能够帮助学生解决生活中的一些问题,激发学生的学习兴趣,因此本节知识在高中概率中占有相当重要的地位。

2、教学目标

知识与技能

(1)理解古典概型及其概率计算公式,

(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

过程与方法

根据本节课的内容和学生的实际水平,通过试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用分类讨论的思想解决概率的计算问题。

情感、态度与价值观

树立从具体到抽象、从特殊到一般的辩证唯物主义观点,培养学生用随机的观点来理性的理解世界, 使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神。鼓励学生通过观察类比提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。

3、教学重点与难点

重点:理解古典概型的概念及利用古典概型求解随机事件的概率。

难点:如何判断一个试验是否为古典概型,弄清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

二、教法与学法分析

1、教法分析

为突出重点,突破难点,使学生能达到本节课设定的目标,根据本节课的内容特点,我采取了引导探究,讨论交流的教学模式,即通过再次考察前面做过的实验引入课题,根据学习情况,在合适的时机提出问题,设置合理有效的教学情境,让每一位学生都参与课堂讨论,提供学生思考讨论的时间与空间,师生一起探讨古典概型的特点以及概率值的求法。在教学过程中,利用多媒体等手段构建数学模型,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来,并利用了情感暗示以及恰当的评价等教学方法。

2、学法分析

学生在教师创设的问题情景中,通过观察类比、思考探究、概括归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

三、教学过程分析

(一)创设情境,引出课题

通过设置问题情境,激发学生的学习兴趣,同时设置问题:在不用做模拟试验的情况下,如何求解随机事件A、B发生的概率呢?从而引入新课。

(二)新知探究

1、考察两个试验:

①掷一枚质地均匀的硬币的试验;

②掷一枚质地均匀的骰子的试验。

这两个试验出现的结果分别有几个?(2个,6个)

2、思考:在试验二中,出现偶数点包含哪些基本事件?点数大于4可有哪些基本事件构成?

在试验一及二中,必然事件可以表示成基本事件的和吗?不可能事件呢?

提出问题:上述两个试验的每个结果之间都有什么特点?

3、基本事件的特点:

(1) 任何两个基本事件是互斥的;

(2) 任何事件(除不可能事件)都可以表示成基本事件的和

学生——思考、讨论

老师——利用试验给出所有可能出现的结果即基本事件。

老师——加以引导与启发,利用基本事件的关系发现基本事件的特点。

学生——归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力

这节课的重点是理解古典概型,通过掷硬币与掷骰子两个接近于生活的试验的设计。先激发学生的学习兴趣,然后引导学生观察试验,分析结果,找出共性。最后,总结归纳出基本事件的特点。然后再通过举例,进一步加深对基本事件的理解,从而为引出古典概型的定义做好铺垫。

?二、通过类比,引出概念

例1 从字母a,b,c,d中任意取出两个不同字母的实验中,有那些基本事件?(6个)

?设计意图:使学生掌握基本事件,学会用列举法列出所有的基本事件,为归纳出古典概型的特征提供了素材。

问题:上述试验和例1的共同特点是什么?

试验中所有可能出现的基本事件只有有限个;

每个基本事件出现的可能性相等。

老师——引导学生列举时做到不重复、不遗漏

学生——列举出基本事件

老师——引导学生找出共性。我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。

为了引出古典概型的概念,设计了例1。通过列举法列举基本事件,进一步理解与巩固基本事件的概念;然后设疑:“类比试验与例1中基本事件有什么共同点?”,通过问题的解决让学生体验由特殊到一般的数学思想方法的应用,从而引出古典概型的概念。

?三、观察类比,推导公式

思考:古典概型下,基本事件出现的概率是多少?随机事件按出现的概率又该如何计算?

教学背景分析

(一)本课时教学内容的功能和地位

本节课内容是普通高中课程标准实验教科书人教A版必修3第三章概率第2节古典概型的第一课时,主要内容是古典概型的定义及其概率计算公式。

从教材知识编排角度看,学生已经学习完随机事件的概念,概率的定义,会利用随机事件的频率估计概率,学习了古典概型之后,学生还要学习几何概型,古典概型的知识在课本当中起到承前启后的作用。古典概型是一种特殊的概率模型。由于它在概率论发展初期曾是主要的研究对象,许多概率的最初结果也是由它得到的,因此,古典概型在概率论中占有重要地位,是学习概率必不可少的。

学习古典概型,有利于理解概率的概念,有利于计算事件的概率;为后续进一步学习几何概型,随机变量的分布等知识打下基础;它使学生进一步体会随机思想和研究概率的方法,能够解决生活中的实际问题,培养学生应用数学的意识。

(二)学生情况分析(所授对象接受知识情况和对本教学内容已知的可能情况)

1、学生的认知基础:

学生在初中已经对随机事件有了初步了解,并会用列表法和树状图求等可能事件的概率。在前面的随机事件的概率一节中,已经掌握了用频率估计概率的方法,即概率的统计定义。了解了事件的关系与运算,尤其是互斥事件的概念,以及概率的性质和概率的加法公式。这些知识上的储备为本节课的基本事件的概念理解和古典概型的概率公式的推导打下了基础。学生在前面的学习中熟悉了大量生活中的随机事件的实例,对于掷硬币,掷骰子这类简单的随机事件的概率可以求得。

2、学生的认知困难:

我调查了初中的数学老师,和高一的学生对这部分知识的理解,发现学生初中学习了等可能事件的概率,对简单的等可能事件可计算其概率,但没有模型化,所以造成学生只知其然,不知其所以然。根据以往的教学经验,如果不对概念进行深入的理解,学生学完古典概型之后,还停留在原有的认知水平上,那么,由于概念的模糊,会导致其对复杂问题的计算错误。

教学目标

1、学生通过对大量生活实例的对比分析,了解基本事件的特点,理解古典概型的概念、特征及其计算公式。

2、学生经历从生活实例抽象数学模型的过程,体现了从具体到抽象、从特殊到一般的辩证唯物主义观点;学生能够用随机的观点理解世界。

3、学生通过各种有趣的,贴近生活的实例,体会数学来源于生活,感受如何用数学去解释现实世界中的现象,解决生产生活中的问题。

教学重、难点及分析

本节课的重点是通过实例理解古典概型的两个特征及其概率计算公式。

由于学生已经在初中学过等可能事件的概率,对于古典概型的概率计算公式的理解和应用并不难,因此,我认为本节课的难点是对基本事件的概念的理解和对古典概型的两个特征的准确理解。

教学过程

由于我的问题开放性比较大,所以这里只能预设一下过程,实际教学过程中,要根据学生的回答情况做相应的调整。

1、提出问题:

问题1、生活中你能举出哪些随机事件的例子?

对于这个问题,学生可能举的例子非常多,例如:掷一枚质地均匀的硬币出现正面朝上;掷一枚质地均匀的骰子出现1点;汽车到十字路口正好遇到红灯;从围棋罐中摸出白子;买一张彩票中奖;射击正好中10环;种一粒种子正好发芽。等等。

如果学生举例困难,老师可以引导学生从某个生活场景中提取例子,比如上学路上,体育比赛当中,扑克牌等等。

我的设计意图是让学生从生活中举出大量随机事件的例子,继而可以从中分析研究,归纳出古典概型的特征。让学生举例,可以激发学生的求知欲,吸引学生主动探究。另一方面,也让学生从中体会到数学是解决实际问题的工具。

因为贯穿始终都要用到大家举出的实例,所以,这些实例当中应当含有古典概型的例子,也包括了不是古典概型的典型例子,如果学生没能举出,在学生举出实例之后,我会根据学生的例子情况进行适当的补充。必须具备的例子:掷硬币,掷骰子,种一粒种子,等车时间问题,向圆盘扔黄豆。

2、分析实例:

这一环节我想先让学生通过其已有的经验去求这些随机事件的概率。可能有的学生会用前面一节学习的统计方法,用频率去估计概率,对于这种方法,要给予肯定,同时要启发学生这种方法的缺点是费时费力,有时由于条件所限,也比较难操作。也有学生会利用初中求等可能事件概率的方法,求得一部分随机事件的概率,对于这一方法,先肯定。我的设计意图是,让学生联系前面所学,从其已有的认知基础出发,去感受新知。

在求概率的过程中,学生会发现有些随机事件的概率求出来了,有些却不能求出来,举例:

掷一枚质地均匀的硬币出现正面朝上的概率是1/2;

掷一枚质地均匀的骰子出现1点是1/6;

指数函数

一、教材分析

1.《指数函数》在教材中的地位、作用和特点

《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节内容,是在学习了《指数》一节内容之后编排的。通过本节课的学习,既可以对指数和函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《指数函数》不仅是本章《函数》的重点内容,也是高中学段的主要研究内容之一,有着不可替代的重要作用。

此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。

2.教学目标、重点和难点

通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:

知识维度:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。

技能维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。

素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。

鉴于对学生已有的知识基础和认知能力的分析,根据《教学大纲》的要求,我确定本节课的教学目标、教学重点和难点如下:

(1)知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题;

(2)技能目标:①渗透数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力;

(3)情感目标:①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力③领会数学科学的应用价值。

(4)教学重点:指数函数的图象和性质。

(5)教学难点:指数函数的图象性质与底数a的关系。

突破难点的关键:寻找新知生长点,建立新旧知识的联系,在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。

二、教法设计

由于《指数函数》这节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学达到不仅使学生初步理解并能简单应用指数函数的知识,更期望能引领学生掌握研究初等函数图象性质的一般思路和方法,为今后研究其它的函数做好准备,从而达到培养学生学习能力的目的,我根据自己对“诱思探究”教学模式和“情景式”教学模式的认识,将二者结合起来,主要突出了几个方面:

1.创设问题情景.按照指数函数的在生活中的实际背景给出两个实例,充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,而这两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。

2.强化“指数函数”概念.引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点,请学生思考对于底数a是否需要限制,如不限制会有什么问题出现,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。

3.突出图象的作用.在数学学习过程中,图形始终使我们需要借助的重要辅助手段。一位数学家曾经说过“数离形时少直观,形离数时难入微”,而在研究指数函数的性质时,更是直接由图象观察得出性质,因此图象发挥了主要的作用。

教师活动:①引导学生对课堂知识进行归纳,完成对分类讨论、数形结合等数学方法的归纳;②布置课后及拓展作业

学生活动:完成对指数函数的概念和性质的课内小结并通过课后作业进一步深化学习目标,有能力的同学完成网上调研并在下节课与同学交流我国在利用14C进行考古所取得的成果。

设计意图:教师在本环节引导学生对指数函数的知识进行梳理,深化知识与技能目标,并通过作业实现目标的巩固。

5.板书设计

考虑到板书在教学过程中发挥的功能,本节课我设计了由三个板块构成的板书,板面分配比例为2:1:1,第一大板块包含了两部分,一是指数函数的定义,二是课前准备的画有坐标系和表格的小黑板;第二板块书写了例1和例2的第一问;第三板块由学生完成例2的后两问、练习和课堂小结组成。

五、教学评价

教学评价的及时有效能调动课堂的气氛、感染学生的情绪,对课堂教学发挥着积极的推动作用,因此,我将教学评价将贯穿于本节课的每个教学环节中。例如情景导入的表达式评价、回忆指数知识的记忆评价、得出指数函数概念的归纳评价、作图时的准确性评价、解题时的规范性评价、小结时的表述性评价等。在学生交流、讨论、探究等环节注意启发学生完成知识互评、能力互评,通过多种评价方式让更多的学生获得学习的自信,在轻松融洽的课堂评价氛围中完成本节课的教学和学习任务。

当然教师会通过对学生作业的批改获得更全面的对学生知识掌握的评价和课堂效果的反思,并在后续的时间里修订课堂设计方案,达到预期的教学效果,实现学生的能力发展。以上是我对指数函数这节课的设计和思考,敬请批评指正!

1、锐角三角形中,任意两个内角的和都属于区间  ,且满足不等式:

即:一角的正弦大于另一个角的余弦。

2、若  ,则 ,

3、  的图象的对称中心为 ( ),对称轴方程为 。

4、  的图象的对称中心为 ( ),对称轴方程为 。

5、  及 的图象的对称中心为 ( )。

6、常用三角公式:

有理公式:  ;

降次公式:  , ;

万能公式:  , , (其中 )。

7、辅助角公式:  ,其中 。辅助角 的位置由坐标 决定,即角 的终边过点 。

8、  时, 。

9、  。

其中  为内切圆半径, 为外接圆半径。

特别地:直角  中,设c为斜边,则内切圆半径 ,外接圆半径 。

10、  的图象 的图象( 时,向左平移 个单位, 时,向右平移 个单位)。

11、解题时,条件中若有  出现,则可设 ,

则  。

12、等腰三角形  中,若 且 ,则 。

13、若等边三角形的边长为  ,则其中线长为 ,面积为 。

回想起这学期的工作,我感受颇多。这学期,我担任了高一(7)班班主任及高一(4)、(7)班的数学教学工作。首先,我想就数学教学工作谈谈我及我们备课组的一些做法:

一、对学生严格要求,培养良好的学习习惯和学习方法

学生在从初中到高中的过渡阶段,往往会有些不能适应新的学习环境。例如新的竞争压力,以往的学习方法不能适应高中的学习,不良的学习习惯和学习态度等一些问题困扰和制约着学生的学习。为了解决这些问题,我确实下了一翻功夫。

1、改变学生学习数学的一些思想观念,树立学好数学的信心

在开学初,我就给他们指出高中数学学习较初中的要难度大,内容多,知识面广,让他们有一个心理准备。我们班是一个重点班,全班大多数同学初中升高中成绩比较差,这造成一些成绩相对较差学生有自卑感,害怕自己不能学好数学;相反有些成绩较好学生骄傲自大,放松对数学的学习。对此,我给他们讲清楚,大家其实处在同一起跑线上,谁先跑,谁跑得有力,谁就会成功。对较差的学生,给予多的关心和指导,并帮助他们树立信心;对骄傲的学生批评教育,让他们不要放松学习。

第一次月考,全班很多同学考得不好,甚至有个别同学只有三、四十分。有个以前成绩较好女生哭着对我说,她从来没有考过这么低的分,对学好数学没有信心。我耐心给她分析没考好的原因,一是试卷的难度大,二是考查的知识点上课时没能重点掌握,三是没有做好复习工作,教给她要注意的地方。全班基本上树立了能学好数学的信心。

2、改变学生不良的学习习惯,建立良好的学习方法和学习态度

开始,有些学生有不好的学习习惯,例如作业字迹潦草,不写解答过程;不喜欢课前预习和课后复习;不会总结消化知识;对学习马虎大意,过分自信等。我要求统一作业格式,表扬优秀作业,指导他们预习和复习,强调总结的重要性,并有一些具体的做法,如写章节小结,做错题档案,总结做题规律等。对做得好的同学全班表扬并推广,不做或做得差的同学要批评。在我的严格要求下,大多数同学能很快接受,慢慢的建立起好的学习方法和认真的学习态度。当然,要改变根深蒂固的问题并不容易,这学期还要坚持下去。

二、刻苦钻研教材,不断提高自身的教学教研能力

高一虽然已经教过了几轮,但是每一年的感觉都不一样。从不敢因为教过而有所懈怠。我还是像一位新老师一样认真阅读新课标,钻研新教材,熟悉教材内容,查阅教学资料,适当增减教学内容,  认真细致的备好每一节课,真正做到重点明确,难点分解。遇到难以解决的问题,就向老教师讨教或在备课组内讨论。另外,我还积极阅读教学教参书籍及教学论文,如《中学数学教学参考》等,认真学习各种教学方法,并尝试运用到实践教学中去,当然,还有很多是不成熟。

积极参加各种教研活动,如集体备课,校内外听课,教学教研会议。努力提高课堂教学的操作调控能力,语言表达能力,运用多种教学器材,为了节省时间和增加课堂容量,我坚持用多媒体课件上课。课下,根据自己的理解,选题、出检测试卷,这样也提高了我对教材重难点的理解。

积极安排时间做好学生的辅导工作,学生有问题及时解决。

坚持了一个学期,我感觉收获颇多。

三、备课组的精诚合作是取得成绩的关键

如果说高一数学取得了一点成绩的话,那也是我们备课组在教学能力强、经验丰富的何艳文组长的带领下,团结合作的结果。我们的备课组做事非常齐心。我们坚持集体备课。集体备课使我们对教材的认识达到统一,理解更深刻,时间安排一致。除了规定的时间集体备课外,我们还经常在一起讨论,解决问题。其次,统一测试、统一复习资料。平时,备课组安排老师出单元资料、检测题,然后统一使用。在期末复习阶段,组长安排每个老师负责出各章节的复习资料、复习题,资料共享。所以,最后的成绩是我们备课组全体老师共同努力的结果。

四、存在的困惑:
 1.书本习题都较简单和基础,而我们的教辅题目偏难,加重了学生的学习负担,而且学生完成情况很不好。课时又不足,教学时间紧,没时间讲评这些练习题。

2.在教学中,经常出现一节课的教学任务完不成的现象,更少巩固练习的时间。勉强按规定时间讲完,一些学生听得似懂非懂,造成差生越来越多。而且知识内容需要补充的内容有:因式分解的十字相乘法;一元二次方程及根与系数的关系;解不等式等知识。

3.虽然经常要求学生课后要去完成教辅上的精选的题目,但是,相当部分的同学还是没办法完成。学生的课业负担太重,有的学生则是学习意识淡薄。

五、今后要注意的几点

1.要处理好课时紧张与教学内容多的矛盾,加强对教材的研究;

2.注意对教辅材料题目的精选;

3.要加强对数学后进生的思想教育

集合的概念

教学目的:

(1)使学生初步理解集合的概念,知道常用数集的概念及记法

(2)使学生初步了解“属于”关系的意义

(3)使学生初步了解有限集、无限集、空集的意义

教学重点:集合的基本概念及表示方法

教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示

一些简单的集合

授课类型:新授课

课时安排:1课时

教具:多媒体、实物投影仪

内容分析:

1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础

把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑

本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子

这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念

集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明

教学过程:

一、复习引入:

1.简介数集的发展,复习公约数和最小公倍数,质数与和数;

2.教材中的章头引言;

3.集合论的创始人——康托尔(德国数学家)(见附录);

4.“物以类聚”,“人以群分”;

5.教材中例子(P4)

二、讲解新课:

阅读教材第一部分,问题如下:

(1)有那些概念?是如何定义的?

(2)有那些符号?是如何表示的?

(3)集合中元素的特性是什么?

(一)集合的有关概念:

由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.

定义:一般地,某些指定的对象集在一起就成为一个集合.

1、集合的概念

(1)集合:某些指定的对象集在一起就形成一个集合(简称集)

(2)元素:集合中每个对象叫做这个集合的元素

2、常用数集及记法

(1)非负整数集(自然数集):全体非负整数的集合记作N,

(2)正整数集:非负整数集内排除0的集记作N_N+

(3)整数集:全体整数的集合记作Z,

(4)有理数集:全体有理数的集合记作Q,

(5)实数集:全体实数的集合记作R

注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括

数0

(2)非负整数集内排除0的集记作N_N+Q、Z、R等其它

数集内排除0的集,也是这样表示,例如,整数集内排除0

的集,表示成Z

_

3、元素对于集合的隶属关系

(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

(2)不属于:如果a不是集合A的元素,就说a不属于A,记作

4、集合中元素的特性

(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,

或者不在,不能模棱两可

(2)互异性:集合中的元素没有重复

(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……

元素通常用小写的拉丁字母表示,如a、b、c、p、q……

⑵“∈”的开口方向,不能把a∈A颠倒过来写

三、练习题:

1、教材P5练习1、2

2、下列各组对象能确定一个集合吗?

(1)所有很大的实数(不确定)

(2)好心的人(不确定)

(3)1,2,2,3,4,5.(有重复)

3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__

4、由实数x,-x,|x|,所组成的集合,最多含(A)

(A)2个元素(B)3个元素(C)4个元素(D)5个元素

5、设集合G中的元素是所有形如a+b(a∈Z,b∈Z)的数,求证:

(1)当x∈N时,x∈G;

(2)若x∈G,y∈G,则x+y∈G,而不一定属于集合G

证明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,

则x=x+0_a+b∈G,即x∈G

证明(2):∵x∈G,y∈G,

∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)

∴x+y=(a+b)+(c+d)=(a+c)+(b+d)

∵a∈Z,b∈Z,c∈Z,d∈Z

∴(a+c)∈Z,(b+d)∈Z

∴x+y=(a+c)+(b+d)∈G,

又∵=

且不一定都是整数,

∴=不一定属于集合G

四、小结:本节课学习了以下内容:

1.集合的有关概念:(集合、元素、属于、不属于)

2.集合元素的性质:确定性,互异性,无序性

3.常用数集的定义及记法

五、课后作业:

六、板书设计(略)

七、课后记:

推荐访问:范本 教科书 教案 高中数学教科书教案范本七篇 高中数学教科书教案范文七篇 高中数学教科书教案范文七篇

猜你喜欢