当前位置:舍宁秘书网 > 专题范文 > 教案设计 > 六年级数学比教案热门11篇(全文完整)

六年级数学比教案热门11篇(全文完整)

时间:2024-05-23 17:15:02 来源:网友投稿

六年级数学比教案第1篇学材分析按比例分配的练习。学情分析已初步了解了按比例分配的应用,将通过练习进一步巩固此类问题的解决方法。学习目标能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意下面是小编为大家整理的六年级数学比教案热门11篇,供大家参考。

六年级数学比教案热门11篇

六年级数学比教案 第1篇

学材分析

按比例分配的练习。

学情分析

已初步了解了按比例分配的应用,将通过练习进一步巩固此类问题的解决方法。

学习目标

能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力。

导学策略

练习、反思、总结。

教学准备

小黑板

教师活动

学生活动

一、基本练习:

(一)六1班男生和女生的比是3:2

1.男生人数是女生人数的()

2.女生人数是男生人数的(),女生人数和男生人数的比是().

3.男生人数占全班人数的(),男生人数和全班人数的比是().

4.全班人数是男生人数的(),全班人数和男生人数的比是().

5.女生人数占全班人数的(),女生人数和全班人数的比是().

6.全班人数是女生人数的(),全班人数和女生人数的比是().

(二)学校有买来小足球和小篮球120个,小足球和小篮球个数的比是3比5。学校买来小足球和小篮球各多少个?

把250按2比3分配,部分数各是多少

二、变式练习:

1、被减数是36,减数与差的比是4比5,减数是多少?差是多少?

2、有一种药水,按药液与水的比为1比5000配制而成。用这样的药液0.5千克,可配制这样的药水多少千克?

3+5=8

1203/8=45(个)1205/8=75(个)

2+3=5

2502/5=1002503/5=150或250-100=150

4+5=9

364/9=16365/9=20或36-16=20

1+5000=5001

0.51/5001=0.55001=2500.5(千克)

教学反思

提高练习的灵活度,以及练习的形式。

六年级数学比教案 第2篇

教学目标

1.理解比和比例的意义及性质.

2.理解比例尺的含义.

教学重点

整理比和比例、求比值及比例尺.

教学难点

正、反比例概念和判断及应用.

教学步骤

一、基本训练.

43-27

5.65+0.5 4.8÷0.4 1.25÷ 100×1%

0.25×40  2-

二、归纳整理.

(一)比和比例的意义及性质.

1.回忆所学知识,填写表格【演示课件“比和比例”】

2.分组讨论:

比和分数、除法有什么联系?

比的基本性质有什么作用?比例的基本性质呢?

3.总结几种比的化简方法.【继续演示课件“比和比例”】

前项

∶(比号)

后项

比值

除法

分数

(1)整数比化简,比的前项和后项同时除以它们的最大公约数.

(2)小数比化简,一般是把前项、后项的小数点向右移动相同的位数(位数不够补零),使它成为整数比,再用第一种方法化简.

(3)分数比化简,一般先把比的前项、后项同时乘上分母的最小公倍数,使它成为整数比,再用第一种方法化简.

(4)用求比值的方法化简,求出比值后再写成比的形式.

解比例:12 :x=8 :2

4.巩固练习.

(1)李师傅昨天6小时做了72个零件,今天8小时做了96个零件.写出李师傅昨天和今天所做零件个数的比和所用时间的比.这两个比能组成比例吗?为什么?

(2)甲数除以乙数的.商是1.4,甲数和乙数的比是多少?

(3)解比例:
∶ =8∶2

(二)求比值和化简比.【继续演示课件“比和比例”】

1.求比值:4∶

化简比:4∶

2.比较求比值和化简比的区别.

一般方法

结果

求比值

根据比值的意义,用前项除以后项

是一个商,可以是整数、小数或分数

化简比

根据比的基本性质,把比的前项和后项都乘以或者除以相同的数(零除外)

是一个比,它的前项和后项都是整数

3.巩固练习.

(1)求比值.

45∶72  ∶3

(2)化简比.

∶  0.7∶0.25

(三)比例尺.【继续演示课件“比和比例”】

1.出示中国地图.

教师提问:

(1)这幅地图的比例尺是多少?(比例尺是 )

(2)什么叫做比例尺?这个比例尺的含义是什么?(表示实际距离是图上距离的6000000倍)

(3)比例尺除了写成 ,以外,还可以怎样表示?

2.巩固练习.

在一幅地图上,用3厘米长的线段表示实际距离900千米.这幅地图的比例尺是多少?

在这幅图上量得A、B两地的距离是2.5厘米,A、B两地的实际距离是多少千米?一条长480千米的高速公路,在这幅地图上是多少厘米?

(四)正比例和反比例.【继续演示课件“比和比例”】

1.回忆正、反比例意义.

2.巩固练习.

(1)判断下面各题中的两种量是不是成比例.如果成比例,成什么比例.

①收入一定,支出和结余

②出米率一定,稻谷的重量和大米的重量.

③圆柱的侧面积一定,它的底面周长和高.

(2)木料总量、每件家具的用料和制成家具的件数这三种量

当( )一定时,( )和( )成正比例;

当( )一定时,( )和( )成正比例;

当( )一定时,( )和( )成反比例.

(3)如果 =8 , 和 成( )比例.

如果 = , 和 成( )比例.

(4)在一幅地图上,比例尺一定,图上距离和实际距离是不是成比例?成什么比例?

三、全课小结.

这节课我们复习了什么?通过这节课的复习你有什么收获?还有哪些不清楚的

问题?

四、课堂练习.

1.填空.

(l)根据右面的线段图,写出下面的比.

①甲数与乙数的比是( ). 甲数:

②乙数与甲数的比是( ). 乙数:

③甲数与甲乙两数和的比是( ).

④乙数与甲乙两数和的比是( ).

(2)( )24= =24 ∶( )=( )%.

(3) ∶6的比值是( ).如果前项乘上3,要使比值不变,后项应该( ).如果前项和后项都除以2,比值是( ).

(4)把(1吨):(250千克)化成最简整数比是( ),它的比值是( ).

(5) 与3.6的最简整数比是( ),比值是( ).

(6)如果a×3=b×5,那么a∶b=( )∶( ).

(7)如果a∶4=0.2∶7,那么a=( ).

(8)把线段比例尺  改写成数值比例尺是( ).

(9)甲数乙数的比是4∶5,甲数就是乙数的( ).

(10)甲数的 等于乙数的 ,甲乙两数的比是( ).

2.选择正确答案的序号填在( )里.

(1)1克药放入100克水中,药与药水的比是( ).

①1∶99 ②1∶100 ③1∶101 ④100∶101

(2)一项工程,甲队单独做要10天,乙队单独做要8天.甲队和乙队工作效率的最简整数比是( ).

①10∶8 ② 5∶4 ③4、∶5 ④  ∶

(3)在下面各比中,与 ∶ 能组成比例的是( ).

①4∶3 ②3∶4 ③ ∶3 ④ ∶

(4)有一无,某班的出勤率是90%,出勤人数和缺勤人数的比是( ).

①9∶10 ②10∶9 ③1∶9 ④9∶1

(5)在一幅地图上用1厘米的线段表示5千米的实际距离,这幅地图的比例尺是( ).

①1∶5 ②1∶5000 ③1∶500000

(6)用3、5、9、15这四个数组成的比例式是( ).

①15∶3=5∶9 ②3∶15 ③15∶9=5∶3 ④9∶3=5∶15

(7)在比例尺 的地图上,2厘米表示( ).

①0.4千米 ②4千米 ③40千米

(8)大小两圆半径的比是3∶2,它们的面积的比是( ).

①3∶2 ②6∶4 ③9∶4

五、布置作业.

1.化简下面各比.

0.12∶56  ∶

2.写出两个比值都是3的比,并组成比例

3.写出一个比例,使它两个内项的积是12.

4.如图是用1∶20的比例尺画的一个机器零件的截面图,量出图中两个圆的半径,并计算这个零件截面的实际面积.

六、板书设计

比和比例

六年级数学比教案 第3篇

教学目标:

1、使学生理解和掌握比的基本性质,能应用比的基本性质化简比。

2、培养学生的抽象概括能力。

3、渗透转化的数学思想。

教学重点:

理解比的基本性质,掌握化简比的方法。

教学难点:

掌握化简比的方法。

教材分析:

比的基本性质是在学生学习比的意义,比与分数、除法的关系,商不变的性质和分数基本性质的基础上进行教学的。教材联系学过的除法中商不变的性质和分数基本性质,通过想一想启发学生找出比中有什么相应的性质,然后概括出比的基本性质,应用这个性质可以把比化成最简单的整数比。

学情分析:

学生在以前的学习中,已经掌握了商不变的性质和分数基本性质,六年级的学生有一定的推理概括能力,他们完全可以根据比与分数、除法的关系,推导出比的基本性质,这节课通过让学生猜想验证应用,让学生理解比的基本性质,应用性质化简比。

教学过程:

活动一

出示例1,出示例2,让学生解答。

教学比例的基本性质

1、猜想:我们学过除法中商不变的性质和分数的基本性质,根据比同除法、分数之间的联系,你有什么联想和猜测呢?

生:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、验证:大家敢于猜想值得表扬,许多发明创造都来自于猜想。不过,猜想毕竟是猜想,它还有待于证明。你们能想办法对自己的猜想进行验证吗?(让几个小组的代表说一说验证过程并板书在黑板上。)

①根据分数、比、除法的关系验证。

②根据比值验证。

③教师小结:大家的验证都说明了以上的猜想是正确的,这个规律(指板书)就叫做比的基本性质(板书课题)。

④总结比的基本性质,为什么强调0除外呢?

活动二

教学比的基本性质的应用,请同学们想一想,比的基本性质有什么样的用途?

比的基本性质主要用来化简比,一般把比化成最简单的整数比(板书:最简单的整数比。)

根据你自己的理解,能说一说什么是最简单的整数比吗?

(前项和后项是互质数。)

请同学们解答的例1

(1),这两个比是最简比吗?让学生试着化简比。

让学生试做后,总结方法。

出示例1

(2)① 1/6:2/9 ② 0.75:2

学生先讨论方法,再试做。

小结方法:化简时比的前项和后项都是整数时,可以把比写成分数的形式再化简;
是小数先转化为整数;
是分数可以用求比值的方法化简。但要注意,这个结果必须是一个比。

化简比与求比值有什么不同?

六年级数学比教案 第4篇

教学内容:苏教版六年级下数学第38-39页例4,练习七第1-4题

教学目标:

1、让学生认识比例的内项和外项;发现并使理解和掌握比的基本性质。

2、通过自主学习,让学生学会根据比例的基本性质正确判断两个比能否组成比例。

3、培养学生的抽象概括能力。使学生体验数学学习成功的快乐。

教学重点和难点 :

1.理解并掌握比例的基本性质。

2.探究、发现比例的基本性质。

教学准备:多媒体课件

教学过程:

一、复习旧知

1.师:同学们,上节课我们学习了比例,什么叫做比例? 生:表示两个比相等的式子叫作比例。

2.师:如何判断两个比能否组成比例?生:化简比、求比值。

3.判断下面每组的比能否组成比例? 4:8和3:6 20:5和28:7 生1:因为 4∶8 = 1∶2

3∶6 =1∶2

所以 6∶10 = 9∶15 生2:
因为 20∶5 = 4∶1

28∶7 = 4∶1

所以 20∶5=28∶7.

(学生边说教师边用课件展示解题过程,目的在于引导学生规范解题格式。)4.师:除了化简比,求比值,还有没有其他更简单的方法呢?这就是今天我们要学习的内容。

[设计意图:借助现代电教媒体,用形象、直观的图片,来激发学生的求知欲望,同时也培养了学生爱祖国、爱科学的情感。]

二、探究比例的基本性质 1.教学例4 请看屏幕,把左边的三角形按比例缩小后得到右边的三角形。回答问题:?把原来的三角形按几比几来缩小的?

?两个三角形的底和高分别是多少? ?你能根据图中的数据写出比例吗? 学生独立完成,然后汇报。

2.认识比例的项

(1)观察这几组比例,它们有什么共同点?

说明:组成比例的四个数,叫作比例的项。两端的两项叫作比例的外项,中间的两项叫作比例的內项。

(2)结合6:3=4:2具体说一说

在比例6:3=4:2中,组成比例的四个数“

6、

3、

4、2”叫作这个比例的项。两端的两项“6和2”叫作比例的外项。中间的两项“3和4”叫作比例的內项。

(3)提问:你能说出其它三个比例的內项和外项各是多少吗?和你的同桌说一说。

3.探究比例的基本性质

认真观察所写出的比例,你有什么发现? (1)6和2(或3和4)可以同时是比例的外项,也可以同时是比例的內项。

(2)6×2=3×4,两个外项的积等于两个內项的积。

4.验证 是不是所有的比例都有这样的规律呢?请同学们任意写出一个比例,验证规律。

(1)与同桌每人写出一个比例,交换验证。

(2)全班交流:有没有谁举出的比例不符合这个规律? 5.如果用字母表示比例的四个项,即a:b=c:d,那么,这个规律可以表示成什么?(ad=bc)6.小结

其实这个规律就是今天我们要学习的内容:在比例中,两个外项的积等于两个內项的积,这叫作比例的基本性质。(板书) 学生齐读比例的基本性质.7.如果把比例6:3=4:2改写成分数形式,可以怎么改写? (1)在这里,谁是内项,谁是外项?

(2)如果把等号两端的分子、分母交叉相乘,结果会怎样呢? (3)为什么交叉相乘的积相等?明确:等号两端的分子、分母交叉相乘,就是把两个內项和两个外项分别相乘,所以它们的积是相等的。

8.教学“试一试”

(1)假设每组两个比能组成比例,说出组成比例的内外项分别是什么。

(2)应用比例的基本性质判断能否组成比例

(3)交流:以前判断两个比能否组成比例是用什么方法?通过今天的学习,我们知道还可以用什么方法?[设计意图:从学生熟悉的比入手教学,充分重视了学生原有的认知基础,找准了新知识的生长点。然后放手让学生自学,让学生亲自经历知识的发生、发展过程,充分发挥了学生的主体作用。]

三、巩固练习

1.完成“练一练”第1题。

(1)从表中你知道哪些信息? (2)从表中选择两组数据,写出一个乘积相等的式子。

追问:为什么每两个数相乘的积相等? (因为每两个数分别表示速度和时间,它们相乘的积表示路程,甲乙两地路程一定,所以乘积都相等。)(3)根据“80×6=120×4”写出比例,。

学生独立完成,教师巡视。

交流:像这样一个一个举例写出,难免会有重复或遗漏,怎样思考才能很快地一个不漏地写出来呢?根据比例的基本性质,先把80和6当做外项,再把80和6同时当做内项。这样一共能写出几个比例?

2、练习七第2题

(1)下面四个数

5、

7、15和21可以组成比例吗?你是怎样想的? (2)学生独立完成,然后观察能写出的有什么规律?

说明:任意给出4个数判断能否组成比例,可以找出最大和最小项相乘,再把其他两数相乘。

(3)判断2.4.6.8这四个数。若不能组成,你能换掉一个数,使之组成比例吗?

3.任意从1-10中,写出4个数,判断能否组成比例?

与同桌合作完成。一个写,另一个判断。

4.我是小法官,对错我来判。

(1)在比例中,两个外项的积减去两个内项的积,差是0。

( ) (2)如果4a=3b,(a和b均不为0),那么a:b=4:3。

( )(3)2:3=9:6 ( ) (4)因为3×10=5×6,所以3:5=10:6。

( ) 5.完成“练一练”第2题

(1)6和4是比例的什么?联系比例的基本性质,括号里可以填什么?指名填空,并说理由。

(2)学生独立完成第2小题。

四、全课总结

今天我们学习了什么内容?你有什么收获?

六年级数学比教案 第5篇

教学内容:

人教版54页例2

教学目标:

1、在合作探究和解决问题过程中使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法;

2、培养学生应用所学数学知识解决实际问题的能力;
使学生真正成为课堂的主人;

3、通过实例使学生感受到数学于生活,生活离不开数学。

教学重点:

1、正确理解按比例分配的意义。

2、掌握按比例分配应用题的特征和解题方法。

教学难点:

能正确、熟练地解答按比例分配的实际问题。

教学过程:

一、课前组织复习旧知

同学们,通过前几节课的学习,我们已经认识了什么是“比”,那么,如果我现在告诉你“某兴趣小组男生和女生的人数比是5:4,从这组比中,你能推断出什么信息呢?”(出示题目)

学生自由发言,预设推断如下:

1、全班人数是9份,男生占其中的5份,女生占其中的4份。

2、以全班为单位“1”,男生是全班的,女生是全班的。

3、以男生为单位“1”,女生是男生的,全班是男生的。

4、以女生为单位“1”,男生是女生的,全班是女生的。

5、女生比男生少(或20%)。

6、男生比女生多(或25%)。

追问:你还可以从中推断出这个兴趣小组的男生和女生可能各有多少人吗?(请3个学生说说,把握总人数比是5:4就可以了。)

二、探索方法,建立模型

1.理解题意

(1)什么是稀释液?怎样配置的?

(2)什么是按比例分配?

2.自主探究,合作学习

自学数学书P49例题2,思考:

(1)你从例题2中得哪些信息?

(2) 1:4表示什么?你从中得到哪些信息?

(3)你能用画图的方法给同位讲解吗?

(4)方法一先求什么?再求什么?方法二先求什么?再求什么的?

3.小组展讲

小结:方法一把各部分数的比看作份数关系,先求每一份,然后再求各部分的量;
方法二把各部分的比转化成分别占总数的几分之几,根据分数乘法的意义,直接求总数的几分之几是多少。

三、巩固练习

1.一个三角形三条边的长度比是3∶5∶4.这个三角形的周长是36厘米,三条边的长度分别是多少厘米?

2.填空

3.一个长方形的周长是28c,长与宽的比是5:2,长与宽各是多少c?

4.一个班,男生比女生人数多10人,男生与女生人数的比是3:2,全班有多少人?

六年级数学比教案 第6篇

设计说明

根据本节课的内容进行如下设计:

1、创设有效情境,自然引入新课。

首先利用教材中的情境,让学生交流分橘子的方法,从而引出平均分的方法不公平,而按照学生人数的比来分橘子比较合理,将学生的思路自然而然地引入到本节课,即按一定的比进行分配的问题的探讨中来。

2、给学生提供了充分思考和活动的空间。

在新知的探究过程中,给学生提供充分的体验空间。让学生利用手中的小棒代替橘子,鼓励他们实际分配,并做好分配的记录,使学生在这一操作过程中进一步体会比的意义。有了上面的实际操作经验,在解决把140个橘子按3∶2进行分配时,给学生提供了充分的探究和交流的空间。在学生探究出不同的解决问题的策略后,组织他们将不同的策略进行比较,发现其中的共同点,让学生在比较的基础上选择自己认为合理的策略解决问题。

课前准备

教师准备PPT课件

学生准备小棒

教学过程

导入新课

1、观察情境图,获取图中的信息。(课件出示)

从这幅图中你知道了哪些信息?(指名回答)

2、提出问题。

把这些橘子分给1班和2班,怎样分合理?

3、讨论分配方案。

请同学们想一想,说一说你的分法。

(1)学生思考,同桌交流。

(2)指名汇报,说明理由。

预设

生1:可以每个班各分一半。

生2:按1班和2班人数的比来分配。

引导学生说出两个班的人数不一样,平均分看似公平,其实并不公平,而根据两个班人数的比3∶2来分比较合理。

4、引入课题。

像这样,把一个数量按一定的比进行分配的问题在生活中常常会遇到,今天我们就来共同学习这类问题的解决方法。(板书课题:比的应用)

设计意图:通过具体情境,使学生体会到数学与生活的密切联系,激发学生的学习兴趣,引导学生分析情境中的数学信息,为后面的动手操作、分析推导解题方法奠定基础。

探究新知

(一)初探新知。

要把这筐橘子按3∶2分给1班和2班的小朋友,应该怎样分?我们用小棒代替橘子分一分。

1、小组交流后学生动手分配。

引导学生明确1班占3份,2班占2份。

2、记录分配的过程。

引导学生在记录过程中发现6∶4,30∶20……都等于3∶2,为寻找解决问题的策略奠定基础。

3、各小组汇报,说说自己的分法。

引导学生不断调整每次分配的数量,明确1班占3份,2班占2份。

4、在这次分小棒的过程中,你有什么发现?说说感受。

(每次分的小棒的根数比都是3∶2)

设计意图:在分小棒的操作活动中,进一步体会比的意义,在观察记录的过程中发现6∶4,30∶20……都等于3∶2,巩固了化简比的内容。另外,学生不断地调整每次分配的数量,不断地产生新的解题策略,理解按一定的比进行分配的意义。

六年级数学比教案 第7篇

一、教学目标:

1、使学生在掌握稍复杂的求一个数的几分之几是多少的分数应用题的基础上,利用其数量关系列方程解答稍复杂的已知一个数的几分之几是多少,求这个数的应用题。

2、在分析解答的过程中拓宽学生的思维空间,培养学生分析问题的能力。

二、教学重点:

确定单位,理清题中的数量关系。利用题中的等量关系用方程解答。

三、教学过程:

(一)复习准备

1、找出单位。

2、(1)画图分析并列式解答。

(2)说说你是怎样思考和解答的?

(3)学生分析教师板演线段图。

3、导入。

今天我们继续学习分数应用题。

(二)学习新课。

现在老师把这道题改动一下。分析解答。

(1)读题,找出已知条件和问题。

(2)提问:这两道题有没有相同的条件?(有,都已知吃了这袋大米的不同的地方在哪儿?(前者已知一袋大米的重量,求还剩的重量,后者已知还剩的重量,求这袋米的重量。)

(3)我们把这道题也用线段图表示出来,应从哪个条件入手找单位

(4)谁来分析这个条件?

学生分析的同时教师板演线段图。

(5)上道题是已知单位1的重量,求还剩的重量,这道题呢?谁能把条件和问题标在图上?

生在黑板上画出。

(6)对比两道题的线段图说一说是怎样变化的。(条件和问题互相转化了。)

(7)无论谁为条件,谁为问题,题中所涉及的数量关系变了吗?(没变)

(8)说一说上题在解答的过程中涉及到哪些数量关系?

(9)现在买来大米的重量是未知的,根据这个等量关系可以用什么方法解答?(列方程)

(10)试着在练习本上列方程解答。

(11)谁能说说你是怎样解答的?

①生口述:

答:买来大米40千克。

②买来的重量还剩几分之几=还剩的重量。

③小结:

通过刚才的分析解答,你认为这两道题实际上什么相同。

数量关系相同。

④解答方法相同吗?为什么?

解答方法不同。单位已知,可根据数量关系用算术方法解答;
单位未知,可用x代替,运用数量关系式列方程解答。

⑤出示例7。读题,找出已知条件和所求问题。

画图分析解答。

a、从这个条件可以看出题中是几个数量相比?

两个数量相比。

追问:哪两个?

四月份实际烧煤量和四月份计划烧煤量。

我们应把哪个数量看作单位?为什么?

把原计划烧煤量看作单位。因为和它相比,以它为标准,所以把它看作单位。

②画图时我们要用两条线段表示两个数量,先画谁呢?

先画原计划烧煤吨数。

下一步画什么?

实际烧煤吨数。

指名回答:把计划烧煤量看作单位,平均分成9份,实际比计划节约的烧煤量相当于这样的1份,即节约的烧煤量占计划烧煤量。

这两条线段谁为已知?谁为未知?

③指图提问:计划烧煤量与实际烧煤量之间有什么样的等量关系?

计划烧煤吨数-节约吨数=实际烧煤吨数。

计划烧煤吨数未知怎么办?

设计划烧煤吨数为x,用方程解答。

④试做在练习本上。

⑤反馈:说说你的解答方法及依据。

a、学生独立画图分析并列式解答。

b、反馈提问

c、你用什么方法解答的?依据的等量关系式是什么?

(三)课堂总结

今天我们学习的例6、例7与前边学过的分数应用题相比有什么相同点?有什么不同点?

数量间的等量关系相同,解答方法不同。

(四)巩固反馈。

(1)课本第74页1题。

(2)根据列式补充条件。

(五)布置作业。

六年级数学比教案 第8篇

数学教案设计是数学课堂教学活动的一个重要组成部分,下面要为大家分享的就是比和比例教案,希望你会喜欢!

教学目标:

培养学生的观察能力、判断能力。

学法引导:

引导学生通过观察、讨论、计算、探究、验证等方法研究比例的意义和比例的基本性质。

教学重点:

比例的意义和基本性质。

教学难点:

应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。

教学过程:

一、回顾旧知,复习铺垫

同学们,今天数学课上有很多有趣的问题等待你们来探索和发现,希望大家都能有收获。大家有没有信心?

1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。

教师把学生举的例子板书出来

2、老师也准备了几个比,想让同学们求出他们的比值,并根据比值分类。

2:3 4.5:2.7 10:6

80:4 4:6 10:1/2

提问:你是怎样分类的?

教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:两个比相等4.5:2.7=10:6 12:16=3/5:4/5 80:4 =10:1/2)像这样的式子叫做比例。这就是这节课我们要学习的内容。(板书课题:比例的意义)

二、引导探究,学习新知

1、教学比例的意义。

(1)教学例题。

先出示教材上的四幅图,请同学说说图的内容。找一找四幅图中有什么共同的东西。再出示四面国旗长、宽的尺寸。

师:选择其中两面国旗(例如操场和教室的国旗),请同学们分别写出它们长与宽的比,并求出比值。

提问:根据求出的比值,你发现了什么?(两个比的比值相等)

教师边总结边板书:因为这两个比的比值相等,所以我们也可以写成一个等式

2.4∶1.6 = 60∶40 像这样由两个相等的比组成的式子我们把它叫做比例。

师:在图上这四面国旗的尺寸中,还能找出哪些比来组成比例?

比例也可以写成分数形式:4.5/2.7= 10/6请同学们很快地把黑板上我们写出的比例,改写成分数形式。

(2)引导概括比例的意义。

同学们,老师刚才写出的这些式子叫做比例,那么谁能用一句话把比例的意义总结出来呢?(根据学生的回答板书比例的意义。)

(3)判断。举一个反例:那么2:3和6:4能组成比例吗?为什么?

“从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?因此判断两个比能不能组成比例,关键是看什么?(看两个比的比值是否相等)如果不能一眼看出两个比是不是相等的,怎么办?”(根据比例的意义去判断)

根据学生的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比比值求出来以后再看。

(4)比较“比”和“比例”两个概念。

教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?

引导学生从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

(5)反馈训练

用手势判断下面卡片上的两个比能不能组成比例。

6:3和12:6 35:7和45:9

20:5和16:8 0.8:0.4和4:2

2、教学比例的基本性质。

(1)自学课本,了解比例各部分的名称,理解各部分的名称与各项在比例中的位置有关。

( 2 )检查自学情况:指名说出黑板上各比例的内外项。

(3)探究比例的基本性质。

师:在比例的内外项之间,存在着一个有趣的特性(比例的基本性质),大家想不想研究?(板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书

两个外项的积是4.5×6=27

两个内项的积是2.7×10=27

“你发现了什么?”(两个外项的积等于两个内项的积。)板书:4.5×6=2.7×10

(4)计算验证,达成共识。

师:“是不是所有的比例都有这样的性质呢?”让学生分组计算判断前面的比例式,发现所有的"比例式都有这个共同的规律。

(5)引导小结比例的基本性质。

师:通过计算,大家,谁能用一句话把这个规律概括出来?

教师归纳并板书:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。

师:“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着4.5/2.7=10/6) “这个比例的外项是哪两个数呢?内项呢?”

学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。

(6)判断。前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。

反馈训练:应用比例的基本性质判断3:4和6:8能不能组成比例。

三、巩固深化,拓展思维。

(一)判断

1.两个比可以组成一个比例。

( )

2.比和比例都是表示两个数的倍数关系。

( )

3.8:2 和1:4能组成比例。

( )

(二)、用你喜欢的方式,判断下面那组中的两个比可以组成比例。把组成的比例写出来。

(1) 6:9和 9:12 (2)14:2 和 7:1

(3) 0.5:0 .2和 5:2 (4)0.8:0.4和0.3:0.6

(三)填空

(1)一个比例的两个外项互为倒数,则两个内项的积是( ),如果其中一个内项是2/3,则另一个内项是(),如果一个比例中,两个外项分别是7和8,那么两个内项的和一定是()。

(2)如果2:3=8:12,那么,()x()=()x()。

(3)写出比值是4的两个比是()、(),组成比例是()。

(4)如果5a=3b,那么,a:b=():( )

(四)下面的四个数可以组成比例吗?如果能,能组成几个?把组成的比例写出来。

2 、3 、4和6

拓展题:猜猜括号里可以填几?

5:2=10:( ) 2:7=( ):0.7 1.2:2.5=( ):25

四、全课小结,提高认识

通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?

五、布置作业。

练习六2、3、5

六年级数学比教案 第9篇

教学分析:

按比例分配的练习。

学情分析:

已初步了解了按比例分配的应用,将通过练习进一步巩固此类问题的解决方法。

教学目标:

能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力。

教学策略:

练习、反思、总结。

教学准备:

小黑板

教学过程:

一、基本练习

(一)六1班男生和女生的比是3:2

1.男生人数是女生人数的( )

2.女生人数是男生人数的( ),女生人数和男生人数的比是( ).

3.男生人数占全班人数的( ),男生人数和全班人数的比是( ).

4.全班人数是男生人数的( ),全班人数和男生人数的比是( ).

5.女生人数占全班人数的( ),女生人数和全班人数的比是( ).

6.全班人数是女生人数的( ),全班人数和女生人数的比是( ).

(二)学校有买来小足球和小篮球120个,小足球和小篮球个数的比是3比5。学校买来小足球和小篮球各多少个?

把250按2比3分配,部分数各是多少

二、变式练习

1、被减数是36,减数与差的比是4比5,减数是多少?差是多少?

2、有一种药水,按药液与水的比为1比5000配制而成。用这样的药液千克,可配制这样的药水多少千克?

教学反思:

提高练习的灵活度,以及练习的形式。

六年级数学比教案 第10篇

教学目标

使学生加深对比的认识,进一步掌握比的知识在解决实际问题中的应用,并加深认识不同问题的特征和解题方法,并沟通知识间的联系,提高学生应用比的知识解决实际问题的能力,以及思维能力和思维品质。

教学重难点

运用比的知识解决实际问题。

教学准备

教学过程设计

教学内容

师生活动

备注

一、基本训练

二、应用题练习

三、小结

四、作业

1、口算

练习1310

2、说出下面每句话的具体意思。

一本书,已看页数和剩下页数的比是2∶1。

苹果筐数和橘子筐数的比是3∶4

一个长方形长和宽的比是5∶3

男生与全班人数的比是4∶9

要求说出各占几份,再说出每个数量各占总数量的几份之几和一个数量是另一个数量的几分之几或几倍。

3、用比表示下列数量之间的关系。

合唱组人数是美术组的3倍。

大米袋数是面粉的1.5倍。

公牛头数是母牛的1/3

摩托车辆数是自行车的2/5。

1、解答应用题

配制黑火药用的原料是火硝、硫磺和木炭。这三种原料重量的比是15∶2∶3。要配制240千克这种黑火药,需要三种原料各多少千克?

上下练习;

问:已知什么,要求什么?这是什么应用题?关键是什么?

2、练习1311

问:4∶1是哪两个数量的比?长和宽对应的总长度是40米吗?为什么?

要下求什么,再求长和宽?

上下练习。

3、练习1313

明确题意后指出:能根据数量与比之间的对应关系把它改编成分数应用题吗?

学生口述后解答。说想法。

能把(2)改编成分数应用题吗?

练习131213

课后感受

同学们能运用比的知识解决实际问题.

六年级数学比教案 第11篇

教学目标:

1.认识比例各部分名称,理解比例的基本性质。

2.能根据比例的基本性质,正确判断两个比能否组成比例。

3.在自主探究、观察比较中,培养学生分析、概括能力。

教学重、难点:

重点:理解比例的基本性质,能正确判断两个比能否组成比例。

难点:自主探究比例的基本性质。

教学过程:

一、引入

同学们,前段时间在上海举办了一个举世闻名的盛会,知道是什么吗?(世博会)

对,老师也去参观了,参观中,老师还拍下了我最喜欢的建筑(出示:中国馆图片),知道这是什么吗?(中国馆)

对,中国馆的造型很独特,寓意也很深刻,老师想把他放大放到家里做装饰品,看看,哪一副图是按比例放大后的照片,为什么?

生:第二幅只扩大了长,宽没变,第三幅图只扩大了宽,长没变,第三幅图长和宽都扩大了。

二、探索新知

师:通过观察选择了第三幅图,如果给出相应的数据,你能结合前面学习的比例知识和大家说一说,为什么选第三幅图吗?

(给出数据:
20cm、10cm, 30cm、15cm) 师:有道理,根据这两幅图,你还能写出哪些比例? (生独立写)

反馈板书:
20∶30=10∶15

30∶15=20∶10

10∶15=20∶30

20∶10=30∶15 讲解:内项与外项

刚才我们用四个数组成了多个比例,在数学里,我们把组成了比例的四个数,叫做比例的项,其中中间的两个数叫做比例的内项,外面的两个数叫做比例的外项。(板书)

观察:组成比例的内项和外项,你有什么发现,并在小组内交流你的发现.反馈:
在比例里,两个内项的积等于两个外项的积。

师:同意吗?

师:说说你是怎么想的,(板书:20×15=30×10)

师:每一个人再写一个比例,然后在小组内交流一下,看看是否有同样的规律?

学生写并小组内交流。

谁再来说一说这一发现?

师:PPT出示(在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。)

如果a∶b=c∶d,那么这个规律可以表示成什么?

学生口答,教师板书;a×d=b×c 如果把比例写成分数形式,把等号两端的分子、分母分别交叉相乘,结果怎样?

说一说 1.应用比例的基本性质,判断下面的两个比例能否组成比例,并说明理由。

313115 ∶ 和 ∶ 511133( )×( )=( ) ( )×( )=( ) 填一填

根据比例的基本性质,在括号里填上合适的数。

2∶3=4∶( )(口答) 再出示:

2∶4=3∶( ) ( ) ∶3=4∶2 让学生填一填 为什么都填的是6?

看来用

2、

3、

4、6可以组成不同的比例,还可以组成哪些比例呢? 学生自己独立写一写。

反馈:有什么好方法能写的又对又快。

三、课堂小结

推荐访问:教案 热门 数学 六年级数学比教案热门11篇 六年级数学比教案(热门11篇) 六年级数学比教案设计

猜你喜欢