当前位置:舍宁秘书网 > 专题范文 > 公文范文 > 最新高二数学教案,高二数学教学设计(7篇)(精选文档)

最新高二数学教案,高二数学教学设计(7篇)(精选文档)

时间:2023-04-10 19:50:05 来源:网友投稿

下面是小编为大家整理的最新高二数学教案,高二数学教学设计(7篇)(精选文档),供大家参考。

最新高二数学教案,高二数学教学设计(7篇)(精选文档)

作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。写教案的时候需要注意什么呢?有哪些格式需要注意呢?以下我给大家整理了一些优质的教案范文,希望对大家能够有所帮助。

高二数学教案 高二数学教学设计篇一

教学目的:掌握圆的标准方程,并能解决与之有关的。问题

教学重点:圆的标准方程及有关运用

教学难点:标准方程的灵活运用

教学过程:

一、导入新课,探究标准方程

二、掌握知识,巩固练习

练习:⒈说出下列圆的方程

⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3

⒉指出下列圆的圆心和半径

⑴(x-2)2+(y+3)2=3

⑵x2+y2=2

⑶x2+y2-6x+4y+12=0

⒊判断3x-4y-10=0和x2+y2=4的位置关系

⒋圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程

三、引伸提高,讲解例题

例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)

练习:1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。

2、某圆过a(-10,0)、b(10,0)、c(0,4),求圆的方程。

例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求a2p2的长度。

例3、点m(x0,y0)在x2+y2=r2上,求过m的圆的切线方程(一题多解,训练思维)

四、小结练习p771,2,3,4

五、作业p811,2,3,4

高二数学教案 高二数学教学设计篇二

【教学目标】

1、会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

2、能根据几何结构特征对空间物体进行分类。

3、提高学生的观察能力;
培养学生的空间想象能力和抽象括能力。

【教学重难点】

教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

教学难点:柱、锥、台、球的结构特征的概括。

【教学过程】

1、情景导入

教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。

2、展示目标、检查预习

3、合作探究、交流展示

(1)引导学生观察棱柱的几何物体以及棱柱的图片,说出它们各自的特点是什么?它们的共同特点是什么?

(2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。

在此基础上得出棱柱的主要结构特征。

(1)有两个面互相平行;

(2)其余各面都是平行四边形;

(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

(3)提出问题:请列举身边的棱柱并对它们进行分类

(4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

(5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。

(6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

(7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

4、质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

(1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)

(2)棱柱的任何两个平面都可以作为棱柱的底面吗?

(3)圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

(4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

(5)绕直角三角形某一边的几何体一定是圆锥吗?

高二数学教案 高二数学教学设计篇三

本节课内容是面向高二下学期的学生,主要是进行思维的训练。学生在高一的时候已经学过这些数学思维方法,但是对这些知识还没有进行概念化的归纳和专门的训练。学生不知道分析法和综合法的时候还是会用一点,以以往的经验,学生一旦学习概念后,反而觉得难度大,概念混淆,因此,这一教学内容的设计是针对学生的这一情况,设计专题学习网站,通过学生之间经过学习,交流,课后反复思考的,进一步深化概念的过程,培养学生的数学思维能力。

知识与技能

1、 体会数学思维中的分析法和综合法;

2、 会用分析法和综合法去解决问题。

过程与方法

1、 通过对分析法综合法的学习,培养学生的数学思维能力;

2、 培养学生的数学阅读和理解能力;

3、 培养学生的评价和反思能力。

情感态度与价值观

1. 交流、分享运用数学思维解决问题的喜悦;

2. 提高学生学习数学的兴趣;

3. 增强学习数学的信心。

本节课是数学思维训练专题课,专门训练学生利用分析法和综合法解题。分析法在数学中特指从结果(结论)出发追溯其产生原因的思维方法,即执果索因法。综合思维方法:综合是以已知性质和分析为基础的,从已知出发逐步推求位未知的思考方法,即执果导因法。这两种数学思维方法是数学思维方法中最基础也是最重要的方法,是学生的思维训练的重要内容。

1、 情境的设计

情境描述

情境简要描述

呈现方式

趣味问题

从前有个国王在处死那些犯了罪的臣子的时候,总是出一些这样那样的智力题给犯人做,用这种方法给那些更聪明的人一条生路,有一位正直的青年叫亚瑟,不幸得罪了国王,国王判他死罪,他所面临的问题是:“这里有三个盒子,金盒,银盒和铅盒,免死金牌放在其中一个盒子内,每只盒子各写一句话,但其中只有一句是真的,你要是猜中了免死金牌在哪个盒子里,就免你一死罪。”聪明的亚瑟经过推理而获知免死金牌所放的盒子,从而救了自己的命,请问亚瑟是如何推理的?

网页

2、 教学资源的设计

资源类型

资源内容简要描述

资源来源

相关故事

通过有趣的推理故事,如“推理救命的故事”,“宝藏的故事,用于激发学生的学习兴趣。

网上下载

学习网站

专题学习网站,嵌入了经过修改适用于本课的论坛,在线测试等。

自行制作

3、 教学工具:计算机

4、 教学策略:自主探究学习策略,任务驱动策略、反思策略

5、 教学环境:网络教室

1、创设情景,吸引学生注意

教师活动

学生活动

资源/工具

设计思想

提出“推理救命问题”

积极思考,寻找方法

学习网站

以具有趣味性的故事入手,吸引学生的注意,点明本节课的目的。

2、自主探究,获取知识

教师活动

学生活动

资源/工具

设计思想

1、初试牛刀:让学生试做思维训练题。

2、挑战高考题:在高考题中充分体现分析法,综合法。

3、举一反三:让学生学会总结

学以致用:

4、把本节的方法应用到解决数学问题中。

积极思考,互相交流,发现问题,解决问题。

学习网站

1、让学生在轻松活泼的氛围下带着问题,自主、积极地学习,有助于培养学生的自我探索的能力。

2、超级链接控制性好,交互性强,可让学生在较短的时间内收集积累更多的信息,拓宽学生的知识面。

3、培养学生收集信息、处理信息的能力。

3、总结概念,深化概念

教师活动

学生活动

资源/工具

设计思想

归纳本节的方法:分析法和综合法。并指出:数学思维的训练不单只是一节简单的专题课,我们的同学在平常多留心身边事物,多思考问题,不断提高数学思维能力。

体会分析法和综合法的概念,并在论坛上发表自己对概念的理解。

学习网站论坛

通过对具体问题的概念化,加深对概念的理解。

4、自主交流,知识迁移

教师活动

学生活动

资源/工具

设计思想

提出宝藏问题并指导学生利用bbs论坛进行讨论

学生在论坛里充分地发表自己的看法

学习网站论坛

通过自主交流,增强分析问题的能力和解决问题的能力

5、在线测试,评价及反馈

教师活动

学生活动

资源/工具

设计思想

利用学习网站制作一些简单的训练题目

独立完成在线的测试

学习网站

及时反馈课堂学习效果。

6、课后任务

教师活动

学生活动

资源/工具

设计思想

布置课后任务:在网络上收集推理分析的相关例子,在学习网站的论坛上讨论。

记录要求,并在课后完成。

网络资源和学习网站

通过课后的任务训练,进一步提高学生的数学思维能力,把思维训练延续到课堂外。

高二数学教案 高二数学教学设计篇四

1、知识与技能

(1)理解流程图的顺序结构和选择结构。

(2)能用文字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图

2、过程与方法

学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。

3情感、态度与价值观

学生通过动手作图,。用自然语言表示算法,用图表示算法。进一步体会算法的基本思想程序化思想,在归纳概括中培养学生的逻辑思维能力。

重点:算法的顺序结构与选择结构。

难点:用含有选择结构的流程图表示算法。

学法:学生通过动手作图,。用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、直观、便于检查,经历设计流程图表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程图。

教学用具:尺规作图工具,多媒体。

(一)、问题引入 揭示课题

例1 尺规作图,确定线段的一个5等分点。

要求:同桌一人作图,一人写算法,并请学生说出答案。

提问:用文字语言写出算法有何感受?

引导学生体验到:显得冗长,不方便、不简洁。

教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。

本节要学习的是顺序结构与选择结构。

右图即是同流程图表示的算法。

(二)、观察类比 理解课题

1、 投影介绍流程图的符号、名称及功能说明。

符号 符号名称 功能说明终端框 算法开始与结束处理框 算法的各种处理操作判断框 算法的各种转移

输入输出框 输入输出操作指向线 指向另一操作

2、讲授顺序结构及选择结构的概念及流程图

(1)顺序结构

依照步骤依次执行的一个算法

流程图:

(2)选择结构

对条件进行判断来决定后面的步骤的结构

流程图:

3、用自然语言表示算法与用流程图表示算法的比较

(1)半径为r的圆的面积公式 当r=10时写出计算圆的面积的算法,并画出流程图。

解:

算法(自然语言)

①把10赋与r

②用公式 求s

③输出s

流程图

(2) 已知函数 对于每输入一个x值都得到相应的函数值,写出算法并画流程图。

算法:(语言表示)

① 输入x值

②判断x的范围,若 ,用函数y=x+1求函数值;
否则用y=2-x求函数值

③输出y的值

流程图

小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。

学生观察、类比、说出流程图与自然语言对比有何特点?(直观、清楚、便于检查和交流)

(三)模仿操作 经历课题

1、用流程图表示确定线段a.b的一个16等分点

2、分析讲解例2;

分析:

思考:有多少个选择结构?相应的流程图应如何表示?

流程图:

(四)归纳小结 巩固课题

1、顺序结构和选择结构的模式是怎样的?

2、怎样用流程图表示算法。

(五)练习p99 2

(六)作业p99 1

高二数学教案 高二数学教学设计篇五

1、掌握常用基本不等式,并能用之证明不等式和求最值;

2、掌握含绝对值的不等式的性质;

3、会解简单的高次不等式、分式不等式、含绝对值的不等式、简单的无理不等式、指数不等式和对数不等式。学会运用数形结合、分类讨论、等价转换的思想方法分析和解决有关

本章知识点

几类常见的问题

(一) 含参数的不等式的解法

例1解关于x的不等式 。

例2解关于x的不等式 。

例3解关于x的不等式 。

例4解关于x的不等式

例5 满足 的x的集合为a;满足 的x

的集合为b 1 若ab 求a的取值范围 2 若ab 求a的取值范围 3 若ab为仅含一个元素的集合,求a的值。

(二)函数的最值与值域

例6 求函数 的最大值,下列解法是否正确?为什么?

解一:

解二:
当 即 时,

例7 若 ,求 的最值。

例8 已知x , y为正实数,且 成等差数列, 成等比数列,求 的取值范围。

例9 设 且 ,求 的最大值

例10 函数 的最大值为9,最小值为1,求a,b的值。

1、

2、 , 若 ,求a的取值范围

3、

4、

5、当a在什么范围内方程:
有两个不同的负根

6、若方程 的两根都对于2,求实数m的范围

7、求下列函数的最值:

1

2

8.1 时求 的最小值, 的最小值

2设 ,求 的最大值

3若 , 求 的最大值

4若 且 ,求 的最小值

9、若 ,求证:
的最小值为3

10、制作一个容积为 的圆柱形容器(有底有盖),问圆柱底半径和

高各取多少时,用料最省?(不计加工时的损耗及接缝用料)

高二数学教案 高二数学教学设计篇六

推理是高考的重要的内容,推理包括合情推理与演绎推理,由于解答高考题的过程就是推理的过程,因此本部分内容的考察将会渗透到每一个高考题中,考察推理的基本思想和方法,既可能在选择题中和填空题中出现,也可能在解答题中出现。

(1)知识与能力:了解演绎推理的含义及特点,会将推理写成三段论的形式

(2)过程与方法:了解合情推理和演绎推理的区别与联系

(3)情感态度价值观:了解演绎推理在数学证明中的重要地位和日常生活中的作用,养成言之有理论证有据的习惯。

三、教学重点难点

教学重点:演绎推理的含义与三段论推理及合情推理和演绎推理的区别与联系

教学难点:演绎推理的应用

四、教学方法:探究法

五、课时安排:1课时

1、 填一填:

① 所有的金属都能够导电,铜是金属,所以 ;

② 太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此 ;

③ 奇数都不能被2整除,20xx是奇数,所以 。

2、讨论:上述例子的推理形式与我们学过的合情推理一样吗?

3、小结:

① 概念:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为____________.

要点:由_____到_____的推理。

② 讨论:演绎推理与合情推理有什么区别?

③ 思考:所有的金属都能够导电,铜是金属,所以铜能导电,它由几部分组成,各部分有什么特点?

小结:三段论是演绎推理的一般模式:

第一段:_________________________________________;

第二段:_________________________________________;

第三段:____________________________________________.

④ 举例:举出一些用三段论推理的例子。

例1:证明函数 在 上是增函数。

例2:在锐角三角形abc中, ,d,e是垂足。

求证:ab的中点m到d,e的距离相等。

当堂检测:

讨论:因为指数函数 是增函数, 是指数函数,则结论是什么?

讨论:演绎推理怎样才能使得结论正确?

比较:合情推理与演绎推理的区别与联系?

课后练习与提高

1、演绎推理是以下列哪个为前提,推出某个特殊情况下的结论的推理方法( )

a.一般的原理原则;

b.特定的命题;

c.一般的命题;

d.定理、公式。

2、因为对数函数 是增函数(大前提),而 是对数函数(小前提),所以 是增函数(结论)。上面的推理的错误是( )

a.大前提错导致结论错;

b.小前提错导致结论错;

c.推理形式错导致结论错;

d.大前提和小前提都错导致结论错。

3、下面几种推理过程是演绎推理的是( )

a.两条直线平行,同旁内角互补,如果a和b是两条平行直线的同旁内角,则b =180b.由平面三角形的性质,推测空间四面体的性质;

4、补充下列推理的三段论:

(1)因为互为相反数的两个数的和为0,又因为 与 互为相反数且________________________,所以 =8.

(2)因为_____________________________________,又因为 是无限不循环小数,所以 是无理数。

七、板书设计

八、教学反思

高二数学教案 高二数学教学设计篇七

1.掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程;

2.能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程;

3.通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;

4.通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力;

5.通过让中国学习联盟胆探索椭圆的定义和标准方程,激发学生的积极性,培养学生的兴趣和创新意识.

1. 知识结构

2.重点难点分析

重点是椭圆的定义及椭圆标准方程的两种形式.难点是椭圆标准方程的建立和推导.关键是掌握建立坐标系与根式化简的方法.

椭圆及其标准方程这一节教材整体来看是两大块内容:一是椭圆的定义;
二是椭圆的标准方程.椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先遇到的,所以教材把对椭圆的`研究放在了重点,在双曲线和抛物线的教学中巩固和应用.先讲椭圆也与第七章的圆的方程衔接自然.学好椭圆对于学生学好圆锥曲线是非常重要的.

(1)对于椭圆的定义的理解,要抓住椭圆上的点所要满足的条件,即椭圆上点的几何性质,可以对比圆的定义来理解.

另外要注意到定义中对“常数”的限定即常数要大于 .这样规定是为了避免出现两种特殊情况,即:“当常数等于 时轨迹是一条线段;
当常数小于 时无轨迹”.这样有利于集中精力进一步研究椭圆的标准方程和几何性质.但讲解椭圆的定义时注意不要忽略这两种特殊情况,以保证对椭圆定义的准确性.

(2)根据椭圆的定义求标准方程,应注意下面几点:

①曲线的方程依赖于坐标系,建立适当的坐标系,是求曲线方程首先应该注意的地方.应让学生观察椭圆的图形或根据椭圆的定义进行推理,发现椭圆有两条互相垂直的对称轴,以这两条对称轴作为坐标系的两轴,不但可以使方程的推导过程变得简单,而且也可以使最终得出的方程形式整齐和简洁.

②设椭圆的焦距为 ,椭圆上任一点到两个焦点的距离为 ,令 ,这些措施,都是为了简化推导过程和最后得到的方程形式整齐、简洁,要让学生认真领会.

③在方程的推导过程中遇到了无理方程的化简,这既是我们今后在求轨迹方程时经常遇到的问题,又是学生的难点.要注意说明这类方程的化简方法:①方程中只有一个根式时,需将它单独留在方程的一侧,把其他项移至另一侧;
②方程中有两个根式时,需将它们分别放在方程的两侧,并使其中一侧只有一项.

④教科书上对椭圆标准方程的推导,实际上只给出了“椭圆上点的坐标都适合方程 “而没有证明,”方程 的解为坐标的点都在椭圆上”.这实际上是方程的同解变形问题,难度较大,对同学们不作要求.

(3)两种标准方程的椭圆异同点

中心在原点、焦点分别在 轴上, 轴上的椭圆标准方程分别为:
, .它们的相同点是:形状相同、大小相同,都有 , .不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同.

椭圆的焦点在 轴上 标准方程中 项的分母较大;

椭圆的焦点在 轴上 标准方程中 项的分母较大.

另外,形如 中,只要 , , 同号,就是椭圆方程,它可以化为 .

(4)教科书上通过例3介绍了另一种求轨迹方程的常用方法——中间变量法.例3有三个作用:第一是教给学生利用中间变量求点的轨迹的方法;
第二是向学生说明,如果求得的点的轨迹的方程形式与椭圆的标准方程相同,那么这个轨迹是椭圆;
第三是使学生知道,一个圆按某一个方向作伸缩变换可以得到椭圆.

教法建议

(1)使学生了解圆锥曲线在生产和科学技术中的应用,激发学生的兴趣.

为激发学生圆锥曲线的兴趣,体会圆锥曲线知识在实际生活中的作用,可由实际问题引入,从中提出圆锥曲线要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还可以启发学生寻找身边与圆锥曲线有关的例子。

例如,我们生活的地球每时每刻都在环绕太阳的轨道——椭圆上运行,太阳系的其他行星也如此,太阳则位于椭圆的一个焦点上.如果这些行星运动的速度增大到某种程度,它们就会沿抛物线或双曲线运行.人类发射人造地球卫星或人造行星就要遵循这个原理.相对于一个物体,按万有引力定律受它吸引的另一个物体的运动,不可能有任何其他的轨道.因而,圆锥曲线在这种意义上讲,它构成了我们宇宙的基本形式,另外,工厂通气塔的外形线、探照灯反光镜的轴截面曲线,都和圆锥曲线有关,圆锥曲线在实际生活中的价值是很高的.

(2)安排学生课下切割圆锥形的事物,使学生了解圆锥曲线名称的来历

为了让学生了解圆锥曲线名称的来历,但为了节约课堂时间,教学时应安排让学生课后亲自动手切割圆锥形的萝卜、胶泥等,以加深对圆锥曲线的认识.

(3)对椭圆的定义的引入,要注意借助于直观、形象的模型或教具,让学生从感性认识入手,逐步上升到理性认识,形成正确的概念。

教师可从太阳、地球、人造地球卫星的运行轨道,谈到圆萝卜的切片、阳光下圆盘在地面上的影子等等,让学生先对椭圆有一个直观的了解。

教师可事先准备好一根细线及两根钉子,在给出椭圆在上的严格定义之前,教师先在黑板上取两个定点(两定点之间的距离小于细线的长度),再让两名学生按教师的要求在黑板上画一个椭圆。画好后,教师再在黑板上取两个定点(两定点之间的距离大于细线的长度),然后再请刚才两名学生按同样的要求作图。学生通过观察两次作图的过程,总结出经验和教训,教师因势利导,让学生自己得出椭圆的严格的定义。这样,学生对这一定义就会有深刻的了解。

(4)将提出的问题分解为若干个子问题,借助多媒体课件来体现椭圆的定义的实质

在教学时,可以设置几个问题,让学生动手动脑,独立思考,自主探索,使学生根据提出的问题,利用多媒体,通过观察、实验、分析去寻找解决问题的途径。在椭圆的定义的中,可以提出“到两定点的距离的和为定值的点的轨迹一定是椭圆吗”,让学生通过课件演示“改变焦距或定值”,观察轨迹的形状,从而挖掘出定义的内涵,这样就使得学生对椭圆的定义留下了深刻的印象。

(5)注意椭圆的定义与椭圆的标准方程的联系

在讲解椭圆的定义时,就要启发学生注意椭圆的图形特征,一般学生比较容易发现椭圆的对称性,这样在建立坐标系时,学生就比较容易选择适当的坐标系了,即使焦点在坐标轴上,对称中心是原点(此时不要过多的研究几何性质).虽然这时学生并不一定能说明白为什么这样选择坐标系,但在有了一定感性认识的基础上再讲解选择适当坐标系的一般原则,学生就较为容易接受,也向学生逐步渗透了坐标法.

(6)推导椭圆的标准方程时教师要注意化解难点,适时地补充根式化简的方法.

推导椭圆的标准方程时,由于列出的方程为两个跟式的和等于一个非零常数,化简时要进行两次平方,方程中字母超过三个,且次数高、项数多,教学时要注意化解难点,尽量不要把跟式化简的困难影响学生对椭圆的标准方程的推导过程的整体认识.通过具体的例子使学生循序渐进的解决带跟式的方程的化简,即:(1)方程中只有一个跟式时,需将它单独留在方程的一边,把其他各项移至另一边;
(2)方程中有两个跟式时,需将它们放在方程的两边,并使其中一边只有一项.(为了避免二次平方运算)

(7)讲解了焦点在x轴上的椭圆的标准方程后,教师要启发学生自己研究焦点在y轴上的标准方程,然后鼓励学生探索椭圆的两种标准方程的异同点,加深对椭圆的认识.

(8)在新知识的基础上要巩固旧知识

椭圆也是一种曲线,所以第七章所讲的曲线和方程的知识仍然使用,在推导椭圆的标准方程中要注意进一步巩固曲线和方程的概念.对于教材上在推出椭圆的标准方程后,并没有证明所求得的方程确是椭圆的方程,要注意向学生说明并不与前面所讲的曲线和方程的概念矛盾,而是由于椭圆方程的化简过程是等价变形,而证明过程较繁,所以教材没有要求也没有给出证明过程,但学生要注意并不是以后都不需要证明,注意只有方程的化简是等价变形的才可以不用证明,而实际上学生在遇到一些具体的题目时,还需要具体问题具体分析.

(9)要突出教师的主导作用,又要强调学生的主体作用,课上尽量让全体学生参与讨论,由基础较差的学生提出猜想,由基础较好的学生帮助证明,培养学生的团结协作的团队精神。

推荐访问:高二 数学教学 数学教案 最新高二数学教案 高二数学教学设计(7篇) 高二数学教案全套

猜你喜欢