当前位置:舍宁秘书网 > 专题范文 > 公文范文 > 2023年度数据分析师面试题及答案大全(精选文档)

2023年度数据分析师面试题及答案大全(精选文档)

时间:2023-02-03 08:50:02 来源:网友投稿

下面是小编为大家整理的2023年度数据分析师面试题及答案大全(精选文档),供大家参考。

2023年度数据分析师面试题及答案大全(精选文档)

数据分析师面试题及答案大全

根据中国信息通信研究院对大数据相关企业的调研数据,近年来我国大数据产业规模稳步增长。今天小编整理了数据分析师面试题及答案供大家参考,一起来看看吧!

数据分析师面试题及答案

1、海量日志数据,提取出某日访问百度次数最多的那个IP。

首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有个2^32个IP。同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求。

或者如下阐述:

算法思想:分而治之+Hash

1.IP地址最多有2^32=4G种取值情况,所以不能完全加载到内存中处理;

2.可以考虑采用“分而治之”的思想,按照IP地址的Hash(IP)24值,把海量IP日志分别存储到1024个小文件中。这样,每个小文件最多包含4MB个IP地址;

3.对于每一个小文件,可以构建一个IP为key,出现次数为value的Hashmap,同时记录当前出现次数最多的那个IP地址;

4.可以得到1024个小文件中的出现次数最多的IP,再依据常规的排序算法得到总体上出现次数最多的IP;

2、搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。

假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就是越热门。),请你统计最热门的10个查询串,要求使用的内存不能超过1G。

典型的TopK算法,还是在这篇文章里头有所阐述,

文中,给出的最终算法是:

第一步、先对这批海量数据预处理,在O(N)的时间内用Hash表完成统计(之前写成了排序,特此订正。July、2011.04.27);

第二步、借助堆这个数据结构,找出TopK,时间复杂度为N‘logK。

即,借助堆结构,我们可以在log量级的时间内查找和调整/移动。因此,维护一个K(该题目中是10)大小的小根堆,然后遍历300万的Query,分别和根元素进行对比所以,我们最终的时间复杂度是:O(N)+N’__O(logK),(N为1000万,N’为300万)。ok,更多,详情,请参考原文。

或者:采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。

3、有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。

方案:顺序读文件中,对于每个词x,取hash(x)P00,然后按照该值存到5000个小文件(记为x0,x1,…x4999)中。这样每个文件大概是200k左右。

如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,直到分解得到的小文件的大小都不超过1M。

对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100个词及相应的频率存入文件,这样又得到了5000个文件。下一步就是把这5000个文件进行归并(类似与归并排序)的过程了。

4、有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序。

还是典型的TOPK算法,解决方案如下:

方案1:

顺序读取10个文件,按照hash(query)的结果将query写入到另外10个文件(记为)中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。

找一台内存在2G左右的机器,依次对用hash_map(query,query_count)来统计每个query出现的次数。利用快速/堆/归并排序按照出现次数进行排序。将排序好的query和对应的query_cout输出到文件中。这样得到了10个排好序的文件(记为)。

对这10个文件进行归并排序(内排序与外排序相结合)。

方案2:

一般query的总量是有限的,只是重复的次数比较多而已,可能对于所有的query,一次性就可以加入到内存了。这样,我们就可以采用trie树/hash_map等直接来统计每个query出现的次数,然后按出现次数做快速/堆/归并排序就可以了。

方案3:

与方案1类似,但在做完hash,分成多个文件后,可以交给多个文件来处理,采用分布式的架构来处理(比如MapReduce),最后再进行合并。

5、给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?

方案1:可以估计每个文件安的大小为5G×64=320G,远远大于内存限制的4G。所以不可能将其完全加载到内存中处理。考虑采取分而治之的方法。

遍历文件a,对每个url求取hash(url)00,然后根据所取得的值将url分别存储到1000个小文件(记为a0,a1,…,a999)中。这样每个小文件的大约为300M。

遍历文件b,采取和a相同的方式将url分别存储到1000小文件(记为b0,b1,…,b999)。这样处理后,所有可能相同的url都在对应的小文件(a0vsb0,a1vsb1,…,a999vsb999)中,不对应的小文件不可能有相同的url。然后我们只要求出1000对小文件中相同的url即可。

求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_set中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。

方案2:如果允许有一定的错误率,可以使用Bloomfilter,4G内存大概可以表示340亿bit。将其中一个文件中的url使用Bloomfilter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloomfilter,如果是,那么该url应该是共同的url(注意会有一定的错误率)。

Bloomfilter日后会在本BLOG内详细阐述。

6、在2.5亿个整数中找出不重复的整数,注,内存不足以容纳这2.5亿个整数。

方案1:采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存2^32__2bit=1GB内存,还可以接受。然后扫描这2.5亿个整数,查看Bitmap中相对应位,如果是00变01,01变10,10保持不变。所描完事后,查看bitmap,把对应位是01的整数输出即可。

方案2:也可采用与第1题类似的方法,进行划分小文件的方法。然后在小文件中找出不重复的整数,并排序。然后再进行归并,注意去除重复的元素。

7、腾讯面试题:给40亿个不重复的unsignedint的整数,没排过序的,然后再给一个数,如何快速判断这个数是否在那40亿个数当中?

与上第6题类似,我的第一反应时快速排序+二分查找。以下是其它更好的方法:

方案1:oo,申请512M的内存,一个bit位代表一个unsignedint值。读入40亿个数,设置相应的bit位,读入要查询的数,查看相应bit位是否为1,为1表示存在,为0表示不存在。

方案2:这个问题在《编程珠玑》里有很好的描述,大家可以参考下面的思路,探讨一下:

又因为2^32为40亿多,所以给定一个数可能在,也可能不在其中;

这里我们把40亿个数中的每一个用32位的二进制来表示

假设这40亿个数开始放在一个文件中。

游戏数据分析笔试题

一、编程题

有一个计费表表名jifei 字段如下:phone(8位的电话号码),month(月份),expenses(月消费,费用为0表明该月没有产生费用)

下面是该表的一条记录:64262631,201011,30.6 这条记录的含义就是64262631的号码在2010年11月份产生了30.6元的话费。

按照要求写出满足下列条件的sql语句:

1、查找2010年6、7、8月有话费产生但9、10月没有使用并(6、7、8月话费均在51-100

元之间的用户。

2、查找2010年以来(截止到10月31日)所有后四位尾数符合AABB或者ABAB或者AAAA

的电话号码。(A、B 分别代表1—9中任意的一个数字)

3、删除jifei表中所有10月份出现的两条相同记录中的其中一条记录。

4、查询所有9月份、10月份月均使用金额在30元以上的用户号码(结果不能出现重复)

二、逻辑思维题

1、某人卖掉了两张面值为60元的电话卡,均是60元的价格成交的。其中一张赚了20%,

另一张赔了20%,问他总体是盈利还是亏损,盈/亏多少?

2、有个农场主雇了两个小工为他种小麦,其中A是一个耕地能手,但不擅长播种;
而B

耕地很不熟练,但却是播种的能手。农场主决定种10亩地的小麦,让他俩各包一半,于是A从东头开始耕地,B从西头开始耕。A耕地一亩用20分钟,B却用40分钟,可是B播种的速度却比A快3倍。耕播结束后,庄园主根据他们的工作量给了他俩600元工钱。他俩怎样分才合理呢?

数据分析师可以考哪些证书?

1、 CDA数据分析师认证

发证机构:CDA Institute

证书概况:CDA数据分析师是一套具有专业化,科学化,国际化以及系统化的人才考核标准,分为LEVELⅠ ,LEVEL Ⅱ,LEVEL Ⅲ这三个等级,涉及到金融、电商、医疗、互联网以及电信等行业大数据及数据分析行业从业者所需要具备的一些技能,符合当今全球大数据与数据分析技术潮流。

2、CPDA项目数据分析师认证

颁证机构:中国商业联合会

证书概述:CPDA由中国商业联合会数据分析专业委员会评定认证。CPDA人才具有大数据时代解决工作问题时必需的数据分析思维,了解数据分析流程、掌握数据分析方法,根据不同工作场景应用大数据分析的能力。

3、BDA商业数据分析师认证

颁证机构:中国商业统计学会

证书概述:BDA数据分析师由国家统计局与教育部主办的调查分析师升级拓展而来,具有国家工信部认证。BDA数据分析师证书级别分为初级、中级、高级。

4、CDMP数据管理专业人士认证

发证机构:DAMA国际数据管理协会

证书概况:CDMP(Certified Data Management Professional)数据管理专业认证是由DAMA国际于2004推出,是一项涵盖学历教育、工作经验和专业知识考试在内的综合资格认证,也是目前全球唯一数据管理方面权威性认证。

5、CDGA数据治理工程师

发证机构:DAMA国际数据管理协会-中国分会

证书概况:CDGA数据治理工程师是根据DAMA数据管理体系为基础,对CDMP的考试语言、形式、等级进行了本土化重构。CDGA的进阶途径还有CDGP数据治理专家。