当前位置:舍宁秘书网 > 专题范文 > 公文范文 > 舰船通信系统5G,网络多维度安全状态感知技术

舰船通信系统5G,网络多维度安全状态感知技术

时间:2024-10-19 08:45:02 来源:网友投稿

黄福全,王廷凰,刘子俊,缪秋滚

(1. 深圳供电局有限公司,广东 深圳 518000;
2. 东北电力大学,吉林 吉林 132011)

随着5G 移动通信技术的蓬勃发展,其在舰船通信系统的使用,不仅有效提升了信息通信速度,而且满足了现代信息战对网络性能的要求。网络攻击对舰船通信系统5G 网络运行造成的威胁不可估量[1],采取有效措施对其运行状态进行多维度感知,对舰船通信系统5G 网络安全维护意义重大[2]。

耿方方等[3]针对网络态势要素信息维度高以及大部分事件之间相关性大的特点,从端口、IP 地址、协议、时间、安全事件相似度5 个角度实现网络安全特征相似度的全面分析,以剔除具有相关性的网络安全信息,在此基础上,构建基于量子遗传算法的网络态势感知模型实现网络态势的预测,但该技术存在早熟问题,使得网络态势预测误差较高。丁华东[4]为实现网络安全态势的精准评估,构建了基于贝叶斯的网络状态感知模型,确定网络安全态势指标并对其作离散处理的基础上,建立态势指标分析模型,利用贝叶斯网络实现网络态势影响指标的融合处理,以感知当下网络安全状态,但该技术选择的网络安全态势指标不够全面,这必将对网络安全状态感知效果产生影响。鉴于以上技术存在的缺陷和不足,本文提出舰船通信系统5G 网络多维度安全状态感知技术,解决单一信息源带来的网络安全状态感知误差高的问题。

1.1 舰船通信系统5G 网络多维度安全状态感知框架

图1 为舰船通信系统5G 网络多维度安全状态感知框架。该框架由4 个部分构成,分别为多源网络安全状态信息采集单元、融合处理单元、网络多维度安全状态感知预测单元以及还原单元,其中多源网络安全状态信息采集单元的职责是获取舰船通信系统5G 网络安全状态信息,包括5G 网络运行、配置以及IDS 日志库信息3 种不同类型。融合处理单元利用层次量化评估方法对获取的5G 网络多维度安全状态数据进行处理,实现5G 网络安全态势值的确定,通过对其叠加处理以及归一化完成样本数据集的构建。利用样本数据对基于Att-GRU 的5G 网络安全状态感知模型进行训练,通过鲸鱼优化算法实现模型参数的寻优,对预测结果与实际结果的均方误差进行计算,将之视为鲸鱼优化算法的适应度函数以及算法停止的判断条件,在不符合停止条件的情况下,则反复执行迭代操作,当判断条件成立后,即可停止计算,并获得最佳状态感知模型。最后由还原单元对预测结果作累减反归处理,获得5G 网络安全态势值并对比,实现舰船通信系统5G 网络的多维度安全状态感知。

图1 舰船通信系统5G 网络多维度安全状态感知框架Fig. 1 Multidimensional security state awareness framework for 5G network of ship communication system

1.2 5G 网络多维度安全状态感知模型

1.2.1 门控循环单元

门控循环单元(GRU)是传统循环神经网络(RNN)的变形结构,不仅具有“记忆”功能,也可防止网络在反向传播时出现梯度爆炸问题。GRU 结构中包含2 个门,其中t+1时刻状态信息中保留t时刻信息的多少由更新门决定,t时刻信息有多少被舍弃则由重置门决定。GRU 的执行步骤如下:

1)设定xt为t时刻GRU 的状态输入,ht-1为t-1时刻的输出,由更新门对二者进行处理后,可得到一个满足[0,1] 区间的输出结果,当信息被全部丢弃则为0,当t-1时刻信息全部传输到t时刻,则取值为1,更新门向量rt通过下式获得[5]:

式中:向量连接符用[]表示,更新门权重表示为Wr。

2)重置门利用sigmoid 函数对xt、ht-1进行处理后,可得到满足[0,1]区间的数值,并由tanh 获得,重置门向量zt、向量通过下式描述:

式中:重置门权重表示为Wz;
矩阵元素乘积符号表示为 ⊗,ht-1与重置门之间的权重表示为。

3)GRU 输出ht通过下式进行计算:

1.2.2 基于Att-GRU 的5G 网络多维度安全状态预测

多维度安全状态感知模型通过堆叠多个GRU 网络以适应多维度安全态势时间序列的处理,引入注意力机制可将模型注意力聚焦在5G 网络安全态势样本数据重要特征上,达到提高5G 网络多维度安全状态预测效果的目的。将融合处理单元处理后的5G 网络安全态势时间序列样本数据集作为多维度安全状态感知模型的输入,通过多个GRU 神经网络获取其关键特征,并将隐含状态值传送给后一个GRU,由最后一个GRU 神经网络输出5G 网络安全态势指标预测结果后,由注意力层根据安全态势指标的重要性实现舰船通信系统5G 网络多维度安全状态感知。

1.3 基于鲸鱼优化算法的模型参数寻优

5G 网络多维度安全状态感知模型性能受其参数影响较大,本文采用鲸鱼优化算法对该模型的神经元总量、批处理规模参数进行优化处理。具体流程为:以任意性原则生成包含N个独立个体的初始鲸鱼种群,迭代时将现下最佳鲸鱼个体位置作为依据,实现种群其他鲸鱼位置的调整,再由获得的任意数p判断鲸鱼是否应采取螺旋操作还是包围操作,直至达到算法结束条件为止。将多维度安全状态感知模型预测结果与实际结果的均方误差当作适应度函数,对各鲸鱼的适应度进行判断,舍弃适应度低的鲸鱼个体,确定与最优适应度相对应的神经元总量、批处理规模参数。

以某舰船通信系统5G 网络为实验对象,对该网络2022 年1 月-2023 年2 月期间的运行状态、日志文件以及配置等态势数据进行采集,其中包括正常样本数据以及不同类型攻击样本数据。采用层次量化评估方法对获取的5G 网络多维度安全状态数据进行处理,确定5G 网络安全态势值,经过对其叠加处理以及归一化完成样本数据集的构建。应用本文技术对舰船通信系统5G 网络进行多维度安全状态感知,分析其状态感知性能。

将前12 个月5G 网络安全态势数据作为训练样本,其余数据为测试样本,根据GRU 时间步长进行时间窗口的设定,5G 网络安全态势预测周期为一周。对5G 网络安全状态数据进行处理后,获得如图2 所示的5G 网络安全状态时间序列数据。

图2 舰船通信系统5G 网络安全态势时间序列Fig. 2 Time series of 5G network security situation in ship communication system

分析图2 可知,通过对5G 网络安全状态数据进行标准化处理,可使其安全态势值分布于[0,1]区间,以提高后续网络安全状态感知模型的收敛速率以及状态感知效果。在不同运行时间下,舰船通信系统5G 网络的安全态势值呈现波动性规律变化。

5G 网络安全状态感知模型性能的优劣取决于模型参数的合理设定,其中神经元个数对模型的拟合效果具有直接影响,采用鲸鱼优化算法对模型各参数进行优化,通过获取最优参数组合实现模型预测性能的提升,实验结果如图3 所示。分析可知,随着迭代次数的不断增加,5G 网络安全状态感知模型的神经元数目参数曲线总体呈上升趋势变化,迭代次数达到20 次后,其值逐渐趋于稳定,最佳神经元数目为35;
批处理规模参数曲线呈逐渐减小规律变化,经过40 次训练后,批处理规模降低至最小值,最佳批处理规模为1.2,继续训练5G 网络安全状态感知模型,该参数不再变化。

图3 模型参数优化结果分析Fig. 3 Analysis of model parameter optimization results

为分析研究技术对5G 网络安全状态感知的优越性,分别将遗传算法(GA)、粒子群算法(PSO)作为优化算法,采用WOA-Att-GRU、GA-Att-GRU、PSO-Att-GRU模型对舰船通信系统5G 网络进行安全态势预测,对各模型预测的平均适应度曲线与最优适应度曲线差异进行对比分析,实验结果如图4 所示。分析可知,随着迭代次数的不断增加,各模型的平均适应度曲线呈不断增大趋势变化,研究技术所用的WOA-Att-GRU模型的平均适应度曲线光滑、走势平稳,与最优适应度曲线基本完全贴合,偏差很小,在45 次迭代后模型达到收敛状态;
GA-Att-GRU、PSO-Att-GRU 模型的平均适应度曲线在迭代初期均表现出不同程度地波动,分别经过60 次、70 次迭代平均适应度曲线达到稳定状态。实验结果表明,WOA-Att-GRU 模型性能最优,利用其对5G 网络进行安全状态感知,有利于感知性能的提升。

图4 各模型预测的适应度曲线对比分析结果Fig. 4 Comparative analysis results of fitness curves predicted by various models

以测试样本为5G 网络安全状态感知模型的输入,样本集由多种攻击类型5G 网络安全状态数据构成,设定一个时间周期内,5G 网络遭受的攻击类型及时间如表1 所示。应用研究技术对5G 网络进行多维度安全状态感知,通过对一个时间周期内的网络安全态势预测结果进行分析,验证研究技术的应用性,实验结果如图5 所示。分析可知,在不同时间点下,舰船通信系统5G 网络安全态势值具有很大差异,正常运行状态下,其安全态势值较低。当有入侵者对舰船通信系统5G 网络发动攻击,其网络安全态势值将会增大,其值越高,5G 网络遭受的威胁越大。实验结果表明,应用研究技术可实现舰船通信系统5G 网络安全状态感知。

表1 网络攻击类型与时间统计表Tab. 1 Statistical table of types and times of network attacks

图5 舰船通信系统5G 网络安全状态预测结果Fig. 5 Prediction results of 5G network security status for ship communication system

研究舰船通信系统5G 网络多维度安全状态感知技术,将注意力机制引入到GRU 网络中,实现5G 网络多维度状态时间序列各变量相关性的综合分析,通过对安全状态感知模型参数优化,提高5G 网络安全态势预测效果。实验结果表明:该技术可实现舰船通信系统5G 网络多维度安全状态感知,当神经元数目为35、批处理规模为1.2 时,5G 网络安全态势预测的平均适应度曲线与最优适应度曲线基本重合。

猜你喜欢 多维度鲸鱼态势 小鲸鱼幼儿100(2022年41期)2022-11-24“多维度评改”方法初探作文成功之路·小学版(2020年9期)2020-10-28迷途鲸鱼数学大王·趣味逻辑(2020年9期)2020-09-062019年12月与11月相比汽车产销延续了增长态势汽车与安全(2020年1期)2020-05-14汇市延续小幅震荡态势中国外汇(2019年19期)2019-11-26鲸鱼小天使·二年级语数英综合(2019年4期)2019-10-06我国天然气供需呈现紧平衡态势中国化肥信息(2019年5期)2019-06-25鲸鱼岛——拖延症动漫星空(2018年4期)2018-10-26多维度市南商周刊(2017年7期)2017-08-22县乡一体化探索呈加速态势中国卫生(2015年2期)2015-11-12

推荐访问:多维 舰船 感知

猜你喜欢