高 畅,毛 旭
(中国直升机设计研究所,江西 景德镇 333001)
雷诺数为惯性力与粘性力的比值,对于流动中边界层的类型、厚度及速度分布,以及流动分离点的位置、分离形态和分离区大小有着重要影响,并进而对飞行器气动特性产生影响[1]。
国外对固定翼飞机,尤其是客机、运输机等的高升力构型做过大量系统性的变雷诺数研究:The Fluid Dynamics Panel of AGARD[2-4]发表专集,对波音、空客等飞机进行了风洞和飞行试验数据分析对比;欧盟框架计划(European Framework Program)[5-7]针对低速高升力构型飞机开展了HiReTT、EUROLIFT[8]等研究项目,研究重点在于机翼及增升装置,结合风洞试验与CFD方法探究雷诺数对升力、阻力、失速特性的影响,旨在提高飞机设计阶段对飞行性能预测的准确性。国内各研究所进行了较多的雷诺数影响研究。风洞试验方面:郑隆乾等[9]在法国ONERA F1风洞进行了某民机着陆构型的半模-地板镜像试验,结果表明雷诺数对增升装置气动特性的影响存在敏感区域;巴玉龙等[10]在哈尔滨气动院FL-9风洞进行了大型客机的半模增压试验,发现雷诺数对升力线斜率、最大升力系数、失速攻角和失速特性都有影响。数值模拟方面:马明生[11]基于CFD方法对运输机单独机身、翼身组合体及不同厚度和弯度的翼型进行了研究,探讨了翼身组合体、机身不同的雷诺数效应及关键影响参数;张培红等人[12]基于自研软件探究了雷诺数对战斗机和运输类飞机影响强弱不同的原因;张耀冰等人[13]探究了亚声速、跨声速、超声速等不同马赫数下雷诺数对小展弦比飞翼标模气动特性及流场特征的影响规律及机理;毛一青[14]分析了低速翼型升阻力、转捩点等随雷诺数变化的规律,并证实变化规律对于三维全机同样适用;许瑞飞等[15]详细分析了雷诺数对民用涡桨飞机增升装置构型的升力系数、失速特性以及附面层速度特性的影响。
直升机具有垂直起降、空中悬停性能和机动灵活的优点[9]。目前国内外关于雷诺数对直升机机身气动特性方面的影响的研究较少。法国ONERA F1增压风洞基于欧直的DGV200直升机开展了专门的试验研究[10],探索雷诺数对直升机机身气动特性的影响。但试验结果介绍较为简略,仅提到雷诺数对机身阻力的影响,对于其他气动特性以及影响机理未有阐述。直升机研制过程中,有时会采用不同缩比模型开展多轮风洞试验[11]。Sikorsky S97直升机通过多轮风洞试验总结了雷诺数影响趋势[13]:20%机身缩比模型,雷诺数增大3倍后负失速迎角推迟2°;30.3%机身缩比模型对比10%模型(试验风速、机身状态略有不同),二者雷诺数相差1个量级,正失速迎角推迟4°。
相对于轻型和中型直升机,运输类直升机较大的机身尺寸,使常规风洞试验缩比比例降到10%以下,试验雷诺数与飞行雷诺数的差距也扩大到了2个量级,使得风洞试验结果外推到飞行条件的雷诺数影响修正成为焦点问题。因此,探究雷诺数对直升机机身气动特性影响规律及影响机理至为重要。本文基于风洞试验结果,采用CFD方法进行进一步研究,捕获流场分布细节,分析气动特性和流场分布随雷诺数变化的规律,为直升机机身风洞试验结果的雷诺数修正提供一定的参考。
为了更好地与风洞试验数据进行对比分析,本文的计算模型采用直升机风洞试验机身缩比模型。坐标轴系定义:以机身重心为坐标原点,沿机身轴线由机头指向机尾为x轴正方向,垂直于机身轴线竖直向上为z轴正方向,y轴采用右手定则来确定。迎角α的方向定义为机身抬头为正,低头为负。
1.1 数值计算方法
本文计算基于雷诺平均Navier-Stokes方程,其表达形式如下[14]:
(1)
式中,Ω表示控制体的体积, ∂Ω表示控制体封闭面的面积,W为守恒变量,Fe为无粘通量,Fv为粘性通量。
对控制方程采用有限体积法进行离散,采用基于压力法的求解器。空间离散采用二阶迎风格式。湍流模型采用Realizablek-ε模型。该模型可较好地模拟分离流计算和带二次流的复杂流动计算。流场边界条件采用速度入口、压力出口。机身采用无滑移固定壁面。
由于机身外形复杂,部件繁多,因此本文采用非结构化的网格生成方法,以八叉树法生成四面体网格,几何外形曲率变化较大和流场变化剧烈的区域进行了网格加密,以提高流场捕捉精度,同时在机身表面生成附面层,网格量约为1600万。
1.2 方法验证
为验证本文所采用的数值计算方法,采用该机身模型风洞试验的相同工况进行CFD计算,得到的阻力系数随机身迎角变化曲线对比如图1所示。可以看出,CFD计算结果与风洞试验数据吻合较好,验证了本文网格策略及数值方法的有效性。
图1 阻力系数随机身迎角变化曲线对比
本文计算采取与风洞试验相同的改变雷诺数的方式,即保持来流速度相同,采用增加压力的方式使雷诺数增加,讨论不同雷诺数下机身气动特性的差异及变化机理。
2.1 气动特性及雷诺数自准区
图2为不同雷诺数下阻力系数随迎角的变化曲线。其中,Reexp为机身测力风洞试验的雷诺数。可以看出,CFD计算结果与试验结果趋势吻合较好,随着雷诺数的增大,阻力系数降低。这是由于雷诺数较大时流动粘性弱,一方面直接影响了摩擦阻力,另一方面分离减弱减小了压差阻力。
图2 不同雷诺数下阻力系数随机身迎角变化曲线
随着雷诺数增大,阻力系数降低量不断减小,如图3所示,当Re/Reexp>6时,雷诺数增加,阻力系数不再有明显的改变,可以认为对于该机身模型已经达到自准区雷诺数。图4为6Reexp状态与8Reexp状态阻力系数随机身迎角变化的对比,二者几乎没有差别。
图3 阻力系数随雷诺数变化曲线(α= 0°)
图4 阻力系数随机身迎角变化曲线
8Reexp(Refly)状态与0.5Reexp状态相比,阻力系数减小12%;8Reexp状态与Reexp状态相比,阻力系数减小6%。该计算结果可对风洞试验缩比1:16模型与1:8模型的试验结果修正提供一定参考。
图5为试验与CFD计算的不同雷诺数下俯仰力矩系数随迎角的变化曲线,可以看出CFD计算结果与试验结果趋势相近。机身迎角为0°左右时,不同雷诺数下全机纵向静稳定性差异不大。在机身正迎角状态下,雷诺数增大,全机纵向静稳定性明显提升;雷诺数没有改变全机的失速迎角,均为16°;但全机失速后,雷诺数增加使全机的纵向稳定性显著改善。达到雷诺数自准区后,俯仰力矩系数几乎不再变化,如图6。
2.2 流场分布
结合上述雷诺数对气动特性的影响规律,通过研究不同迎角、不同机身部件的流场分布分析雷诺数对直升机机身气动特性的影响机理。
图7为0°迎角下机身主减速器整流罩后部的流场流线图,气流流经主减整流罩两侧后在此处汇聚,受逆压梯度影响形成一对分离涡。在0.5Reexp状态,主减整流罩后的分离涡尺寸较大,且有显著的不对称性;随着雷诺数增大,分离区不断缩小,分离涡的对称性逐渐变好,分离减弱使得机身阻力系数下降;达到自准区雷诺数后,分离涡尺寸与对称性不再有明显的变化。
图7 主减速器整流罩后流线图(α = 0°)
油箱尾部、尾梁尾舱门处的表面压力系数分布云图及流线图如图8、图9所示,可以看出随着雷诺数增大,流动分离减弱,使其阻力系数下降。
图8 油箱尾部压力系数分布云图及流线图(α = 0°)
图9 尾梁尾舱门压力系数分布云图及流线图(α = 0°)
平尾是影响全机纵向静稳定性的重要部件,因此针对平尾开展失速角前后的3个迎角状态的流场分布分析。
在机身迎角为14°工况下,如图10、图11所示,不同雷诺数的平尾表面流线附体,均未发生流动分离现象。
图10 机身迎角14°时平尾表面流线图
图11 机身迎角14°时平尾剖面流线图
机身迎角为16°时,如图12、图13,低雷诺数工况下平尾表面的后缘出现流动分离,随着雷诺数增大,分离涡尺寸减小,4Reexp工况平尾外侧几乎不发生分离,内侧分离减弱。
图13 机身迎角16°时平尾剖面流线图
机身迎角为18°时,平尾表面气流分离更为剧烈,且主分离涡诱导产生了二次涡,随着雷诺数增大,主涡与二次涡尺寸减小。雷诺数对分离位置也有一定的影响,雷诺数较小时,分离涡尺寸较大,涡的位置在平尾弦向靠前缘,展向靠近平尾外侧;雷诺数增大后,分离涡向平尾的后缘及内侧收缩,雷诺数增加可以延缓平尾上的流动分离,如图14、图15。
图14 机身迎角18°时平尾表面流线图
图15 机身迎角18°时平尾剖面流线图
图16-图18为不同机身迎角状态下平尾后缘某点的附面层速度型。在机身迎角为14°工况下,如图16所示,雷诺数较小时附面层较厚,壁面附近速度相对较低;雷诺数越大,平尾表面附近的速度越大,速度型越饱满,对逆压梯度的抵抗作用越强。因此,在迎角增加到16°、18°时(图17、图18),全机发生失速后,大雷诺数下附面层的抗分离能力强,使得壁面上的回流较弱。
图18 机身迎角18°时平尾后缘某点的附面层速度型
图19为6Reexp状态与8Reexp状态下机身迎角16°时平尾某站位剖面的流线图,2种工况下平尾表面流线附体,无明显的流动分离现象。截取该剖面平尾后缘某点的附面层速度型,如图20所示,2种工况下附面层厚度相近,且饱满的速度型对逆压梯度有较强的抵抗作用,该处未发生流动分离。
图19 不同雷诺数下平尾剖面流线图(α= 16°)
图20 不同雷诺数下平尾后缘某点的附面层速度型(α= 16°)
2.3 气动干扰
主桨毂结构复杂,该处剧烈的气流流动分离严重降低了机身静稳定性。如图21,机身迎角在0°~-8°范围内,相同雷诺数下去主桨毂后的机身纵向稳定性显著提高。
图21 去主桨毂前后不同雷诺数下俯仰力矩系数随机身迎角变化曲线
对比全机去主桨毂前后,不同机身迎角下的机身纵向静稳定性(图20)、机身阻力系数在不同雷诺数时的差值(图22、图23),几乎没有差别,即对于主桨毂这类结构复杂、气流流动分离剧烈的部件,其流场对雷诺数变化不敏感。
图22 去主桨毂前后不同雷诺数下阻力系数随机身迎角变化曲线
图23 不同雷诺数下主桨毂部件阻力随机身迎角变化曲线
图24为不同雷诺数下去主桨毂前后平尾的纵向静稳定性随机身迎角的变化曲线。可以看出,相较于带主桨毂状态,去主桨毂后平尾的纵向静稳定性明显提升,尤其是机身迎角为负的工况下,即主桨毂的尾流会对平尾产生一定气动干扰,从而降低平尾的静稳定性。去主桨毂前后,雷诺数增大后平尾的纵向静稳定性的变化较带主桨毂状态的变化相差不大,说明主桨毂的尾流对平尾的气动干扰几乎不随雷诺数增大而改变。
图24 去主桨毂前后不同雷诺数下平尾俯仰力矩系数随机身迎角变化曲线
为探究雷诺数变化对直升机机身气动特性的影响,本文基于一直升机风洞试验模型机身缩比模型及试验结果,采用CFD方法开展深入分析,得到结论如下:
1)CFD计算结果与试验结果趋势吻合较好;随着雷诺数的增大,流动粘性减弱,主减速器整流罩、尾舱门等部件的流动分离减弱,阻力系数降低;雷诺数增大到6Reexp后达到自准区雷诺数,阻力系数不再有明显的降低。
2)0°迎角下8Reexp状态与0.5Reexp状态相比,阻力系数减小12%;8Reexp状态与Reexp状态相比,阻力系数减小6%。该计算结果可对1:16与1:8缩比模型的风洞试验结果修正提供一定参考。
3)雷诺数增大没有改变全机的失速迎角,但全机失速后,雷诺数增加使全机的纵向稳定性显著改善。失速迎角前后,雷诺数增大后影响平尾表面分离的位置与程度:分离涡向平尾的后缘及内侧收缩,分离减弱、延缓。
4)主桨毂这类分离剧烈的部件对雷诺数变化不敏感,且雷诺数变化也几乎不影响主桨毂尾流对平尾的气动干扰。
猜你喜欢 平尾风洞试验迎角 双层平尾对旋翼/平尾干扰的抑制机理研究直升机技术(2021年4期)2022-01-12连续变迎角试验数据自适应分段拟合滤波方法北京航空航天大学学报(2021年6期)2021-07-20民用飞机平尾载荷的不确定性及全局灵敏度分析民用飞机设计与研究(2019年4期)2019-05-21全动式水平尾翼大飞机(2018年1期)2018-05-14低风压架空导线的风洞试验电线电缆(2017年5期)2017-10-18滚转机动载荷减缓风洞试验北京航空航天大学学报(2016年9期)2016-11-16飞机全动平尾颤振特性风洞试验航空学报(2015年4期)2015-05-07失速保护系统迎角零向跳变研究科技传播(2014年4期)2014-12-02遮挡条件下超高层建筑风洞试验研究重庆建筑(2014年12期)2014-07-24高速铁路接触线覆冰后气动力特性的风洞试验研究中国铁道科学(2014年1期)2014-06-21