当前位置:舍宁秘书网 > 专题范文 > 公文范文 > 不同种类及加工方式对杂粮酸奶体外抗氧化活性的比较

不同种类及加工方式对杂粮酸奶体外抗氧化活性的比较

时间:2024-09-11 18:30:01 来源:网友投稿

朱晓雪,龚绵红,杨秉坤,庄 姣,李亚凤,丁雨红,唐立和,魏晓斌,剧 柠

不同种类及加工方式对杂粮酸奶体外抗氧化活性的比较

朱晓雪1,龚绵红1,杨秉坤1,庄 姣1,李亚凤1,丁雨红1,唐立和2,魏晓斌2,剧 柠1※

(1. 宁夏大学食品与葡萄酒学院,银川 750021;
2. 宁夏北方乳业有限责任公司,银川 750101)

为探究杂粮品种及加工方式对杂粮酸奶体外抗氧化活性的影响,选择小米、黄米、燕麦、藜麦、糙米、荞麦、高粱米7种杂粮为原料,经过蒸制、煮制、打浆3种常见加工方式,比较其多酚含量及抗氧化活性,对特性较好的杂粮经恰当处理后与牛奶共发酵制备酸奶,研究该杂粮酸奶的多酚含量及抗氧化活性,开发具备抗氧化活性的杂粮酸奶。结果表明,7种杂粮之间的抗氧化能力存在显著(<0.05)差异,采用抗氧化综合(antioxidant potency composite,APC)指数法评定杂粮的抗氧化活性,发现抗氧化活性最高的杂粮为荞麦。进一步对荞麦进行加工处理,发现蒸制处理后其抗氧化活性优于煮制和打浆。将蒸制的荞麦与牛奶混合制备酸奶,制成的荞麦酸奶总酚含量为52.85 mg/100g,是普通酸奶的5.16倍;
且其抗氧化能力显著高于普通酸奶(<0.05)。该研究为功能性杂粮酸奶的开发提供借鉴。

农产品;
杂粮;
加工方式;
酸奶;
抗氧化活性

研究表明,杂粮中富含酚酸、单宁、花青素、植物甾醇等多酚类化合物,比传统主粮有更高的抗氧化活性[1-2]。这些多酚类化合物能够通过阻断自由基导致的链式反应延缓或抑制脂质及其他生物膜氧化的过程,起到预防衰老和辅助治疗慢性疾病的保健作用[3]。不同地域的杂粮多酚类化合物含量不同,其抗氧化效果也存在差异[4]。中国西北地区昼夜温差大,日照时间长,太阳辐射强的自然条件有利于农作物酚类化合物的形成与积累[5-8]。近年来杂粮酸奶(青稞、黑米等)因其良好的风味及口感深受消费者欢迎[9]。研究表明,添加杂粮的酸奶抗氧化性能显著高于普通酸奶[10],且其抗氧化效果受杂粮种类、比例及加工方式的影响[11-13]。目前关于杂粮的功能活性及杂粮酸奶已有较多研究[14-16],而针对中国西北地区种植的杂粮及杂粮酸奶的抗氧化特性尚未见系统报道。本文采用抗氧化综合(antioxidant potency composite,APC)指数法综合评价西北重要省份—宁夏地区种植的7种杂粮体外抗氧化活性,探究不同加工方式对杂粮酸奶抗氧化特性的影响,从而筛选出抗氧化活性强、加工方式适宜的杂粮酸奶并对其抗氧化特性进行表征。试验结果为西北地区杂粮的开发利用提供数据支持及参考,同时为功能性酸奶的开发提供借鉴。

1.1 材料与试剂

小米、黄米、燕麦、藜麦、糙米、荞麦、高粱米,宁夏山逗子杂粮绿色食品科技开发有限公司。1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)、2,2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐(2,2"- Azinobis-(3-ethylbenzthiazoline-6-sulphonate),ABTS)、2,4,6-三吡啶基三嗪(2,4,6-Tri(2-pyridyl)-s-triazine,TPTZ)、福林酚试剂、水溶性VE(Trolox)、芦丁(纯度>99%),上海麦克林生化科技有限公司;
没食子酸(纯度>99%),德国默克集团有限公司;
甲醇、丙酮、亚硝酸钠、硝酸铝、碳酸钠、氢氧化钠等均为市售分析纯。

1.2 仪器与设备

WFJ72系列721型可见分光光度计,上海光谱仪器有限公司;
RE-52AA 旋转蒸发仪,上海亚荣生化仪器厂;
PHSJ-3F pH计,上海仪电科学仪器股份有限公司;
冷冻干燥机,美国LABCONCO公司;
BSP-150恒温培养箱,上海博迅实业有限公司医疗设备厂。

1.3 方法

1.3.1 样品制备(蒸、煮、打浆)

颗粒完整饱满、色泽鲜亮的杂粮,经除杂清洗后分别进行蒸、煮、打浆。蒸杂粮时料液比1∶1.5(g/mL)、100 ℃、10 min。煮杂粮时料液比1∶20(g/mL)、100 ℃、20 min。打浆:以1∶5(g/mL)的料水比加入30 ℃水中浸泡1 h于打浆机打浆至充分磨匀,备用。最后使用冻干机冻干样品,-80 ℃预冻4 h,冻干后将其储藏于-20 ℃冰箱中。

1.3.2 样品的提取

1)谷物中多酚的提取

游离酚的提取参照康子悦等[17-18]的方法略有改动。样品粉碎过0.3 mm筛网,精确称取2 g样品于离心管中,加30 mL 80%丙酮溶液20 ℃超声提取30 min,每隔5 min 漩涡混匀,4 500 r/min离心10 min,收集上清液,残渣按上述方法重复提取2次,合并提取液于45 ℃下真空旋转蒸发至干,甲醇复溶至10 mL,即为游离型多酚提取物,密封-80 ℃低温保存,每个样品提取3次。游离型多酚提取后的残渣,加30 mL 2 mol/L NaOH溶液25 ℃摇床振荡水解1 h。用 6 mol/L HCl 调pH值至2~3,加入正己烷萃取,离心去除上清液,然后用30 mL乙酸乙酯萃取3次。合并上层乙酸乙酯萃取相于45 ℃下真空旋转蒸发至干,甲醇定容至10 mL,即为结合型多酚提取物,密封-80 ℃低温保存。每个样品提取3次。

2)酸奶中多酚的提取

参照SILVA等的方法略有改动[19],称酸奶样品5 g与15 mL 85%甲醇水混合,40 kHz(25 ℃,30分钟)超声水浴提取并离心(4 500 r/min,10 min,4 ℃)。萃取进行2次,将上清液混合并用旋转真空蒸发器在30 ℃下蒸发至干。甲醇定容至10 mL,并将提取残渣用20 mL 2 mol/L的NaOH在轨道振荡器上振荡(250 r/min,4 h)水解,以获得结合酚类化合物的提取物。逐渐加入6 mol/L HCl将所得水解物酸化至pH 值1.5~2.0。离心后用30 mL乙酸乙酯提取上清液3次。提取液用旋转真空蒸发器在30 ℃下蒸发至干。将所得残余物溶解在甲醇中,最终体积为10 mL。每个样品提取3次。

1.3.3 总酚含量的测定

采用Folin-Ciocalteu法[11]测定样品的总酚含量。以没食子酸为标样制作标准曲线,结果以100 g干基中所含没食子酸的毫克数表示(简写为mg/100g)。计算公式如下:

式中为总酚质量分数,mg/100g;
0为空白样吸光度值;
1为样品吸光度值;
为没食子酸标准曲线的截距;
为没食子酸标准曲线的斜率;
为提取液体积,mL;
为样品质量,g。

1.3.4 总黄酮含量的测定

采用NaNO2-Al(NO3)3法[20],略有改动。取0.5 mL 提取液加入4.5 mL 70%乙醇和0.3 mL 5% NaNO2溶液混匀反应6 min,再加入0.3 mL 10% Al(NO3)3溶液混匀,反应6 min,最后加入4 mL 4% NaOH 溶液混匀,定容至10 mL,反应15 min,510 nm 波长处测其吸光度。以芦丁为标样制作标准曲线,结果以100 g干基中所含芦丁的毫克数表示(简写为mg/100g)。测定重复3次。计算公式如下:

式中为总黄酮质量分数,mg/100g;
1为芦丁标准曲线的截距;
1为芦丁标准曲线的斜率。

1.3.5 抗氧化活性测定

DPPH自由基清除能力测定参照赵霞等的方法[21]。ABTS+·自由基清除能力测定参照杨瑞等的方法[22-23]。铁离子还原能力(FRAP Ferricion Reducing Antioxidant Power)测定参照ZHANG等的方法[24]。

抗氧化能力以每100 g样品中Trolox当量表示(μmol/100g),计算公式如下[25]:

式中为Trolox当量,μmol/100g;
2为Trolox标准曲线的截距;
2为Trolox标准曲线的斜率;
为样品稀释倍数。

1.3.6 酸奶工艺流程及操作要点

选取经1.3.1加工,并通过1.3.5测定抗氧化活性较好的加工工艺的杂粮进行酸奶的制备。具体工艺:将鲜牛乳与处理过的杂粮、白砂糖按一定比例混合;
预热,于70 ℃、20 MPa 条件下均质5 min,均质后将混合液加热至95 ℃、灭菌10 min,灭菌结束后,迅速冷却至42 ℃。无菌条件下,将发酵剂按一定比例接种至混合发酵液中,42 ℃条件下发酵6 h。4 ℃冷藏后熟12~24 h后即得杂粮酸奶。

1.3.7 感官评价

参照彭小霞等[26]的方法对酸奶产品进行评价。

1.4 数据处理

数据用Excel整理并采用平均值±标准偏差表示;
采用Origin2021b及RStudio软件进行显著性及相关性分析并做图(<0.05)。使用抗氧化活性综合(antioxidant potency composite,APC)指数法[27]进行不同杂粮及不同加工方式荞麦中抗氧化活性比较,按照下式计算APC 综合指数。

式中为APC 综合指数,%;
x为方法测定值;
max为该方法测定的最大值;
为使用的方法总数。

2.1 不同种类杂粮的抗氧化性能比较

以DPPH·清除能力、ABTS+•清除能力。铁离子还原能力3种检测方法表征杂粮的抗氧化能力。由表1可知,在7种杂粮中藜麦游离酚提取物的DPPH自由基清除能力最强,达332.31 μmol /100g,荞麦次之。结合酚提取物的DPPH自由基清除能力中糙米最强,达173.51 μmol/100g,小米和燕麦次之。在ABTS+·清除能力中荞麦的游离酚提取物显著高于其他杂粮(<0.05),糙米的清除能力最低;
而结合酚提取物中糙米的ABTS+·清除能力最强,荞麦最低。在铁离子还原能力中,荞麦游离酚提取物的铁离子还原能力(1 056.69 μmol /100g)最强,显著高于其他杂粮(<0.05),是其他杂粮的2~4倍,高粱米次之,小米、黄米最低;
在结合酚提取物中,糙米的还原铁离子能力最强,小米和燕麦次之,荞麦最低。根据以往杂粮抗氧化的相关报道[23,28-29],西北地区杂粮如藜麦、糙米、荞麦等具有更好的抗氧化能力。

表1 不同种类杂粮的抗氧化能力及APC综合指数

注:同列不同小写字母表示差异显著(<0.05)。下表同。

Note: Different lowercase in the same column indicate significant difference (< 0.05). The following table is the same.

由于3种抗氧化检测机理不同,不同抗氧化活性评价方法所得到的结论也存在差异,因此本研究采用APC指数法对不同杂粮的抗氧化活性进行评价,结果见表1。APC指数由大到小的顺序是:荞麦、高粱米、藜麦、糙米、燕麦、小米、黄米。因此针对不同加工方式对杂粮抗氧化能力的影响,选择综合指数较高的荞麦进行下一步研究。

2.2 不同加工方式对荞麦多酚含量及抗氧化性能的影响

2.2.1 不同加工方式下荞麦的多酚含量

荞麦中的酚类物质在不同热加工过程中受到不同程度的综合作用力,与结合态酚类化合物相比,游离态酚类化合物结构不稳定,更易被破坏和分解[30],因此处理过的荞麦游离酚均会有所损失,这可能是由于部分可溶性游离多酚在加工时溶解于水中,也可能是由于热处理过程中产生的热量或氧化反应导致游离酚的损失或降低[31]。由表2可知,蒸制、煮制和打浆3种加工方式显著影响荞麦多酚提取物中游离酚和总酚含量(<0.05)。蒸制、煮制和打浆3种方式下,荞麦多酚提取物中游离酚质量分数分别减少了35.38%、48.02%、59.21%;
结合酚质量分数分别增加了71.96%、12.87%、104.02%。加工后荞麦的游离酚出现不同程度的降低,这可能是由于蒸制和煮制2种热处理方式导致部分游离酚发生氧化或降解反应[32-33];
打浆则可能是物理破坏导致了游离酚的损失。荞麦中的结合酚多与谷物中蛋白质及膳食纤维中不溶性纤维基质结合[34],因此,在高温作用下蛋白质及纤维素结构发生变化,使结合酚得到释放[35],从而导致荞麦加工后的结合酚增加。与未处理的荞麦相比,蒸制相较于其它方式对总酚的损失率更小。

黄酮含量方面,蒸制使荞麦的游离黄酮含量显著高于未处理及其他加工方式的荞麦(<0.05)。与未处理过的荞麦相比,蒸制荞麦中的游离黄酮、总黄酮分别增加了50.90%、34.57%。未处理及加工后荞麦的结合黄酮无显著性差异(>0.05)。有报道称,高温作用会导致细胞壁破裂,有利于溶剂与细胞内部的相互渗透,增加黄酮在溶剂中的溶解,使黄酮类物质更易被提取出来,但加热时间过长会使游离黄酮被破坏和分解[35-37]。本试验中蒸制使得游离黄酮、总黄酮均增加的原因可能是较高温度,较短蒸制时间(10 min)使得游离黄酮得以保留的同时,总黄酮含量显著增加(<0.05)。

表2 不同加工方式下荞麦的多酚及黄酮含量比较

2.2.2 不同加工方式下荞麦的抗氧化能力

由表3可知,在经过蒸制、煮制和打浆处理后处理后,荞麦的DPPH自由基清除能力显著降低。其中荞麦游离酚提取物的DPPH自由基清除能力分别减少26.18%、39.53%、55.49%;
结合酚提取物的DPPH自由基清除能力分别增加了104.42%、264.53%、272.54%。根据分析,游离酚提取物的DPPH自由基清除能力与游离酚含量具有一致的变化规律,表明游离酚的含量可以很好地反映游离酚提取物的DPPH自由基清除能力,这与王耀红的结论一致[38]。ABTS+·自由基清除能力方面,蒸制方式下荞麦游离酚提取物的ABTS+·清除能力下降不明显(>0.05),煮制和打浆的方式显著低于蒸制和未处理(<0.05);
结合酚提取物中蒸制、煮制和打浆的方式显著高于未处理的ABTS+·自由基清除能力(<0.05)。铁离子还原能力方面,蒸煮方式下游离酚提取物的铁离子还原能力变化不明显(>0.05),打浆的方式使铁离子还原能力显著降低了34%;
3种加工方式下荞麦结合酚提取物的铁离子还原能力变化不显著(>0.05)。

通过APC综合指数法评价不同方式的抗氧化性,其抗氧化活性由高到低依次为蒸制、未处理、煮制、打浆。因此,将荞麦以蒸制的方式加入酸奶里,研究其抗氧化能力。

表3 不同加工方式下荞麦的抗氧化能力比较

2.2.3 蒸制方式下荞麦多酚含量与抗氧化能力的相关性分析

对蒸制方式下荞麦多酚含量与抗氧化能力进行相关性分析,结果由表4可知,总酚、结合黄酮与DPPH自由基清除能力、ABTS+·清除能力、铁离子还原能力具有良好相关性,其中总酚与ABTS+·清除能力、铁离子还原能力存在极显著正相关性(<0.001),结合黄酮与DPPH自由基清除能力存在极显著正相关性(<0.01)。

表4 荞麦多酚含量与抗氧化能力相关性分析

注:**代表在<0.01 水平上极显著相关,***代表在<0.001 水平上极显著相关。

Note: ** represents extremely significant correlation at the level of<0.01, *** represents extremely significant correlation at the level of<0.001.

2.3 荞麦酸奶的多酚含量及体外抗氧化特性表征

2.3.1 荞麦酸奶的多酚含量

将蒸制好的荞麦与牛奶共同发酵成荞麦酸奶。研究荞麦酸奶的多酚含量及抗氧化性能,结果如图1所示。荞麦酸奶中游离酚、结合酚及总酚的含量均显著高于普通酸奶(<0.05),其中总酚的质量分数(52.85 mg/100g)是普通酸奶(10.94 mg/100g)的5.16倍。荞麦酸奶中的游离黄酮、结合黄酮分别为10.29、2.20 mg/100g,显著高于普通酸奶(<0.05);
总黄酮质量分数为12.49 mg/100g,是普通酸奶的4.23倍。

注:不同小写字母表示同一酚类物质在不同样品间的差异。下同。

Fig .1 Content of polyphenol and flavonoid in yoghurt

2.3.2 荞麦酸奶体外抗氧化特性表征

酸奶体外抗氧化能力如图2可知,DPPH自由基清除能力方面,荞麦酸奶游离酚提取物达30.28 μmol/100g,约是普通酸奶的(15.17 μmol/100g)的2倍;
荞麦结合酚提取物为13.45 μmol/100g,普通酸奶为7.35 μmol/100g。有研究报道酸奶中小分子肽类、氨基酸及乳酸菌对DPPH自由基也具有一定的清除作用[39]。ABTS+•清除能力方面,荞麦酸奶游离酚提取物、结合酚提取物的ABTS+•清除能力分别为81.57、36.45 μmol/100g,显著高于普通酸奶(<0.05)。在铁离子还原能力中,荞麦酸奶游离酚提取物的铁离子还原能力(81.208 μmol/100g)显著高于普通酸奶(30.91 μmol/100g);
结合酚提取物(33.49 μmol/100g)与普通酸奶的还原铁离子能力没有显著差异(>0.05)。可见,荞麦酸奶的3种抗氧化能力均不同程度的高于普通酸奶,具有良好的抗氧化活性。

图2 酸奶的体外抗氧化能力

2.3.3 荞麦酸奶感官评价

经过感官评定,结果由图3可知,添加荞麦颗粒的酸奶总体接受性高于普通酸奶,荞麦的添加主要提升了酸奶的口感和气味,酸奶中的荞麦颗粒增加了酸奶的咀嚼感,同时使酸奶具有自然的发酵风味和独特的麦香味,酸甜可口,口感细腻。

图3 酸奶的感官评价

Fig .3 Sensory evaluation of yoghurt

通过对7种杂粮的抗氧化能力进行筛选,对不同加工方式下杂粮的多酚含量及抗氧化能力进行比较,将抗氧化优异的杂粮以最优的加工方式加入牛奶中发酵成酸奶,研究其杂粮酸奶的抗氧化活性。结果表明:

1)不同种类杂粮的抗氧化能力存在显著差异。根据APC指数进行综合评价,抗氧化能力从高到低依次为:荞麦、高粱米、藜麦、糙米、燕麦、小米、黄米。

2)将抗氧化能力最强的荞麦,经过蒸制、煮制、打浆3种方式加工后,发现蒸制对荞麦的抗氧化性影响最小,多酚损失率最小。总酚和黄酮含量从高到低为:蒸制、煮制、打浆,根据APC指数计算,抗氧化活性大小排序:蒸制、煮制、打浆。

3)将蒸制的荞麦与牛奶发酵成酸奶,其多酚含量及抗氧化效果显著高于普通酸奶(<0.05),相比于普通酸奶,其总酚的质量分数(52.85 mg/100g)是普通酸奶(10.94 mg/100g)的5.16倍,总黄酮质量分数(12.49 mg/100g)是普通酸奶的4.23倍,抗氧化能力显著高于普通酸奶。

此研究结果为杂粮筛选及其抗氧化杂粮酸奶的开发利用提供了参考。下一步关于杂粮酸奶体内多酚利用率及抗氧化性如何,在今后的研究中应继续深入探索。

[1] QIN H, WU H, SHEN K, et al. Fermented minor grain foods: Classification, functional components, and probiotic potential[J]. Foods, 2022, 11(20): 3155.

[2] ALHAITHLOUL HAS, GALAL FH, SEUFI AM. Effect of extreme temperature changes on phenolic, flavonoid contents and antioxidant activity of tomato seedlings()[J]. PeerJ, 2021, 9: e11193.

[3] TORBICA A, BELOVIĆ M, POPOVIĆ L, et al. Comparative study of nutritional and technological quality aspects of minor cereals[J]. Journal of Food Science and Technology, 2021, 58(5): 311-322.

[4] MAANTE-KULJUS M, RÄTSEP R, MOOR U, et al. Effect of vintage and viticultural vractices on the phenolic content of hybrid winegrapes in very cool climate[J]. Agriculture, 2020, 10(5): 169-169.

[5] 张青雯,崔宁博,冯禹,等. 基于气象资料的日辐射模型在中国西北地区适用性评价[J]. 农业工程学报,2018,34(2):189-196. ZHANG Qingwen, CUI Ningbo, FENG Yu, et al. Evaluation on applicability of daily solar radiation model in Northwest China based on meteorological data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 189-196. (in Chinese with English abstract)

[6] 白雪冰,杨佳宁,姜醒睿,等. 西北地区干红葡萄酒产地与酒龄的理化判别方法[J]. 农业工程学报,2022,38(13):319-326. BAI Xuebing, YANG Jianing, JIANG Xingrui, et al. Discrimination method for the origin and age of dry red wine by physico-chemical indices in northwest China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(13): 319-326. (in Chinese with English abstract)

[7] YE Y, LI P, ZHOU J, et al. The improvement of sensory and bioactive properties of yogurt with the introduction of tartary buckwheat[J]. Foods, 2022, 11(12): 1774.

[8] YANG M, LI N, TONG L, et al. Comparison of physicochemical properties and volatile flavor compounds of pea protein and mung bean protein-based yogurt[J]. LWT, 2021, 152: 112390.

[9] 方芳,王文玉,吴炫,等. 谷物酸奶的研制及其抗氧化特性研究[J]. 中国食品,2019,761(1):149-151.

[10] FAN X, LI X, ZHANG T, et al. Novel millet-based flavored yogurt enriched with superoxide dismutase[J]. Frontiers in Nutrition, 2022, 8(1): 791886.

[11] 韩玲玉,汪丽萍,谭斌,等. 7种杂粮抗氧化活性及其挤压杂粮粉体外消化特性研究[J]. 中国粮油学报,2019,34(6):45-52. HAN Lingyu, WANG Liping, TAN Bin, et al. Comparative study of 7 kinds of cereals on antioxidant activity and in vitro digestion characteristics of extruded cereal powders[J]. Journal of the Chinese Cereals and Oils Association, 2019, 34(6): 45-52. (in Chinese with English abstract)

[12] 王红迪,严文霞,蒋兵,等. 超声辅助萌芽联合超高压处理对花生-黑豆芽复合汁品质的影响[J]. 农业工程学报,2023,39(2):222-232. WANG Hongdi, YAN Wenxia, JIANG Bing, et al. Effects of ultrasonic-assisted germination combined with high hydrostatic pressure treatment on the quality of compound peanut-black bean sprout juice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(2): 222-232. (in Chinese with English abstract)

[13] 刘翀,张瑞婷,刘本国,等. 蒸汽爆破处理对麦麸的酚酸组成及其抗氧化活性的影响(英文)[J]. 农业工程学报,2016,32(6):308-314. LIU Chong, ZHANG Ruiting, LIU Benguo, et al. Effect of steam explosion treatment on phenolic acid composition of wheat bran and its antioxidant capacity[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(6): 308-314. (in Chinese with English abstract)

[14] 任长忠,陕方,王敏,等. 荞麦营养与功能性研究及其产品开发[J]. 中国粮油学报,2022,37(11):261-269. REN Changzhong, SHAN Fang, WANG Min, et al. Review on the nutrition and functionality and the food product development of buckwheat[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(11): 261-269. (in Chinese with English abstract)

[15] 段庆松,段玉敏,肖志刚,等. 挤压稳定化处理对米糠各组分蛋白结构及功能性质的影响[J]. 农业工程学报,2020,36(19):283-290. DUAN Qingsong, DUAN Yumin, XIAO Zhigang, et al. Effects of extrusion stabilization on protein structure and functional properties of rice bran components[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(19): 283-290. (in Chinese with English abstract)

[16] 王娟,孙瑞琳,刘欣,等. 藜麦黑枸杞酸奶的工艺优化及其抗氧化活性研究[J]. 食品工业科技,2022,43(12):240-245. WANG Juan, SUN Ruilin, LIU Xin, et al. Study on the optimization of quinoa black medlar yogurt and its antioxidant activity[J]. Science and Technology of Food Industry, 2022, 43(12): 240-245. (in Chinese with English abstract)

[17] 康子悦,沈蒙,葛云飞,等. 基于植物广泛靶向代谢组学技术探究小米粥中酚类化合物组成及其抗氧化性[J]. 食品科学,2021,42(4):206-214. KANG Ziyue, SHEN Meng, GE Yunfei, et al. Analysis of phenolic composition in millet porridge using widely-targeted metabolomics and evaluation of antioxidant activity[J]. Food Science, 2021, 42(4): 206-214. (in Chinese with English abstract)

[18] TI H, LI Q, ZHANG R, et al. Free and bound phenolic profiles and antioxidant activity of milled fractions of different indica rice varieties cultivated in southern China[J]. Food Chemistry, 2014, 159(18): 166-174.

[19] SILVA F, QUEIROGA R, SOUZA E D, et al. Incorporation of phenolic-rich ingredients from integral valorization of Isabel grape improves the nutritional, functional and sensory characteristics of probiotic goat milk yogurt[J]. Food Chemistry, 2022, 369(4): 130957.

[20] 段梦杰,王振华,托合提萨伊普·图尔荪托合提,等. 小米粉添加量对生鲜面条品质与多酚含量及抗氧化活性的影响[J]. 食品科学技术学报,2022,40(3):137-144. DUAN Mengjie, WANG Zhenhua, TUOHETISAYIPU Tuersuntuoheti, et al. Effect of millet flour ratio on fresh noodles quality, polyphenol content and antioxidant activities[J]. Journal of Food Science and Technology, 2022, 40(3): 137-144. (in Chinese with English abstract)

[21] 赵霞. 热加工和发芽处理对燕麦多酚含量和抗氧化性的影响[D]. 无锡:江南大学,2016. ZHAO Xia. Effect of Thermal Processing and Germination on Oat Polyphenols and Antioxidant Activities[D]. Wuxi: Jiangnan University, 2016. (in Chinese with English abstract)

[22] 杨瑞,党斌,张杰,等. 青海青稞、燕麦、藜麦营养品质及抗氧化活性比较研究[J]. 中国粮油学报,2022,37(5):63-69. YANG Rui, DANG Bin, ZHANG Jie, et al. A comparative study on the nutritional quality and antioxidant activity of barley, oats, and quinoa in qinghai[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(5): 63-69. (in Chinese with English abstract)

[23] LIU Y, LIU Y, ZHANG J, et al. Effects of degree of milling on phenolics and antioxidant activity of cooked rice during in vitro digestion[J]. Cereal Chemistry, 2022, 99(2): 393-404.

[24] ZHANG R, KHAN S A, CHI J, et al. Different effects of extrusion on the phenolic profiles and antioxidant activity in milled fractions of brown rice[J]. LWT - Food Science and Technology, 2018, 88: 64-70.

[25] LI D, ZHANG X M, ZHANG J J. Antioxidant activity in vitro guided screening and identification of flavonoids antioxidants in the extract from tetrastigma hemsleyanum diels et gilg[J]. International Journal of Analytical Chemistry, 2021, 2021: 1-11.

[26] 彭小霞. 全谷物酸牛奶的发酵技术及营养功能研究[D]. 广州:华南理工大学,2019. PENG Xiaoxia. Studies on the Fermentation Technology and Nutritional Functionality of Whole Grain Yogurt[D]. Guangzhou: South China University of Technology, 2019. (in Chinese with English abstract)

[27] 张玲艳,李洁莹,韩飞,等. 蒸煮对小米营养成分及抗氧化活性的影响[J]. 食品科学,2017,38(24):113-117. ZHANG Lingyan, LI Jieying, HAN Fei, et al. Effects of steaming and boiling on the nutrients and antioxidant activity of millet[J]. Food Science, 2017, 38(24): 113-117. (in Chinese with English abstract)

[28] ZENG Z C, HU X T, MCCLEMENTS D J, et al. Hydrothermal stability of phenolic extracts of brown rice[J]. Food Chemistry, 2019, 271: 114-121.

[29] 杨红叶,柴岩,王玉堂,等. 不同种类荞麦中各种存在形式多酚含量的研究[J]. 食品科学,2011,32(17):60-64. YANG Hongye, CHAI Yan, WANG Yutang, et al. Analysis of free and bound phenolics in different buckwheat varieties[J]. Food Science, 2011, 32(17): 60-64. (in Chinese with English abstract)

[30] 杨洋,范蓓,李杨,等. 不同加工方式对青稞中酚类物质的影响[J]. 食品工业科技,2023,44(1):11-18. YANG Yang, FAN Bei, LI Yang, et al. Influence of different processing methods on phenols in hulless barley[J]. Science and Technology of Food Industry, 2023, 44(1): 11-18. (in Chinese with English abstract)

[31] 张欢. 蒸煮方式对糙米多酚抗氧化性、淀粉酶和葡萄糖苷酶活性的影响研究[D]. 沈阳:沈阳师范大学,2021. ZHANG Huan. Effect of Different Cooking Methods on Antioxidant Activities and Amylase and Glucoside Activities of Phenolic Compounds in Brown Rice[D]. Shenyang: Shenyang Normal University, 2021. (in Chinese with English abstract)

[32] YU Y, ZHANG B, XI Y, et al. Bioaccessibility and transformation pathways of phenolic compounds in processed mulberry () leaves after in vitro gastrointestinal digestion and faecal fermentation[J]. Journal of Functional Foods, 2019, 60: 1-10.

[33] ZHONG Y J, ZHANG Y Q, ZHU Z Y, et al. Comparative study on physicochemical and nutritional properties of black rice influenced by superheated steam, far infrared radiation, and microwave treatment[J]. Innovative Food Science & Emerging Technologies, 2023, 84: 103282.

[34] ZHANG X W, DONG L H, JIA X C, et al. Bound phenolics ensure the antihyperglycemic effect of rice bran dietary fiber in db/db mice via activating the insulin signaling pathway in skeletal muscle and altering gut microbiota[J]. Journal of Agricultural and Food Chemistry, 2020, 68(15): 4387-4398.

[35] 田怀香,陈霜,陈小燕,等. 不同提取方式对萱草花中酚类物质及抗氧化活性的影响[J]. 农业工程学报,2021,37(20):303-312. TIAN Huaixiang, CHEN Shuang, CHEN Xiaoyan, et al. Effects of different extraction methods on phenolic compounds and antioxidant activity in Hemerocallis flower[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(20): 303-312. (in Chinese with English abstract)

[36] 洪晴悦. 不同热加工对青稞主要生物活性成分和体外消化与肠菌发酵特性的影响[D]. 重庆:西南大学,2021. HONG Qingyue. Effects of Different Thermal Processing on Main Bioactive Components, in Vitro Digestion and Fermentation Characteristics of Qingke[D]. Chongqing: Southwest University, 2021. (in Chinese with English abstract)

[37] 赵萌萌,张文刚,党斌,等. 超微粉碎对青稞麸皮粉多酚组成及抗氧化活性的影响[J]. 农业工程学报,2020,36(15):291-298. ZHAO Mengmeng, ZHANG Wengang, DANG Bin, et al. Effects of ultra-micro-crushing on composition of polyphenols and antioxidant activity of barley bran powder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(15): 291-298. (in Chinese with English abstract)

[38] WANG Q, SHAO H J, ZHANG Z, et al. Phenolic profile and antioxidant properties of sand rice () as affected by cooking and in vitro digestion[J]. Journal of the Science of Food & Agriculture, 2019, 99(8): 3871-3878.

[39] YANG M, LI N, TONG L, et al. Comparison of physicochemical properties and volatile flavor compounds of pea protein and mung bean protein-based yogurt[J]. LWT, 2021, 152: 112390.

Comparative study on antioxidant activity of multigrain yoghurt by different types and processing methods of coarse cereals

ZHU Xiaoxue1, GONG Mianhong1, YANG Bingkun1, ZHUANG Jiao1, LI Yafeng1, DING Yuhong1, TANG Lihe2, WEI Xiaobin2, JU Ning1※

(1.,,750021,; 2..,750101,)

Coarse cereals rich in polyphenol compounds (such as polyphenolic acids, tannin, anthocyanin, and phytosterols) can soften the blood vessels, and lower the blood sugar, blood lipids, and superoxide free radicals for anti-aging and the increasing physiological activity. In this study, a comparison was performed on the polyphenol content and antioxidant activity of seven coarse cereals grown in Northwest China. A systematic investigation was carried out to explore the effects of different processing on the antioxidant activity in vitro. The raw materials were taken as millet, yellow rice, oat, quinoa, brown rice, buckwheat, and sorghum rice. After that, the multigrain yoghurt was prepared with high antioxidant activity in vitro. The antioxidant activity of coarse cereals was evaluated by the Antioxidant potency composite (APC) index using three detection methods, namely, DPPH free radical scavenging capacity, ABTS+·scavenging capacity, and iron ion reducing capacity. The coarse cereal with better performance was processed using steaming, boiling, and beating. The polyphenol content and antioxidant activity were further compared. At the same time, the relationship was determined between the polyphenols and antioxidant activity of the coarse cereal under the best processing. Finally, the coarse cereal with better characteristics and processing was selected to produce the multigrain yoghurt with the optimal polyphenol content and antioxidant activity. The results showed that there were significant antioxidant activities of different coarse cereals (<0.05). Specifically, brown rice and quinoa presented the strongest DPPH free radical scavenging capacity, followed by buckwheat. The buckwheat shared the strongest ABTS+·scavenging and iron reduction capacity. The antioxidant potency composite (APC) index was used to evaluate the antioxidant activity of different types of coarse cereals. The antioxidant activity was listed in the descending order of the buckwheat (93.45%) > the sorghum rice (52.42%) > the quinoa (51.24%) > the brown rice (50.91%) > the oats (39.70%) > the millet (33.82%) > the yellow rice (20.86%). The content of total phenols and flavonoids was also ranked in the descending order of steaming>boiling>beating. The contents of the total phenols were 329.48, 258.24, and 233.46 mg/100 g, respectively, whereas, that of the total flavonoids were 46.11, 34.89, and 34.09 mg/100g, respectively. According to the comprehensive antioxidant index, the antioxidant activity was ranked in the descending order of steaming (94.18%), boiling (91.52%), and beating (73.90%). The best antioxidant activity was achieved in the steamed buckwheat, indicating the lowest total phenol loss rate (29.22%), and the highest increase of flavonoids (34.75%). Furthermore, the correlation analysis between the polyphenol content and antioxidant activity of the steamed buckwheat showed that the total phenol, total flavonoid, and bound flavonoid presented a better correlation with the antioxidant activity. The total phenol showed an extremely significant positive correlation with the ABTS+·scavenging capacity and iron ion reducing capacity (<0.001). A significant positive correlation was found between the bound flavonoid and DPPH radical scavenging capacity (<0.01). The contents of free phenol, bound phenol, and total phenol in the buckwheat-yoghurt were significantly higher than those of the yoghurt without buckwheat (<0.05). The total phenol content of buckwheat-yoghurt (52.85 mg/100g) was 5.16 times of that the yoghurt without buckwheat (10.94 mg/100g), whereas, the total flavonoid content of the buckwheat-yoghurt (12.49 mg/100g) was 4.23 times of that the yoghurt without buckwheat. This finding can provide a strong reference for coarse cereals and functional yoghurt.

agricultural products; coarse cereals; processing method; yoghurt; antioxidant activity

2023-01-31

2023-04-14

宁夏回族自治区重点研发计划项目(2021BEF02022);
国家自然科学基金资助项目(32160593)

朱晓雪,研究方向为乳及乳制品加工。Email:397105572@qq.com

剧柠,教授,研究方向为乳制品加工及乳品微生物学。

Email:juning1122@163.com

10.11975/j.issn.1002-6819.202301132

S21; TS252

A

1002-6819(2023)-08-0268-08

朱晓雪,龚绵红,杨秉坤,等. 不同种类及加工方式对杂粮酸奶体外抗氧化活性的比较[J]. 农业工程学报,2023,39(8):268-275. doi:10.11975/j.issn.1002-6819.202301132 http://www.tcsae.org

ZHU Xiaoxue, GONG Mianhong, YANG Bingkun, et al. Comparative study on antioxidant activity of multigrain yoghurt by different types and processing methods of coarse cereals[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(8): 268-275. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202301132 http://www.tcsae.org

猜你喜欢荞麦杂粮酸奶红山荞麦看木森今日农业(2022年13期)2022-09-15杂粮粉到底能不能吃?中老年保健(2022年2期)2022-08-24酸奶一定要凉着喝吗?中老年保健(2022年3期)2022-08-24我国科学家发现荞麦属新种今日农业(2021年3期)2021-12-05酸奶的12个健康真相,你知道几个中国生殖健康(2020年8期)2021-01-18细粮VS杂粮中国粮食经济(2018年5期)2018-12-27酸奶的12个健康真相,你知道几个中国生殖健康(2018年3期)2018-11-06在家自己做酸奶可行吗启蒙(3-7岁)(2018年7期)2018-07-10荞麦花开黄河·黄土·黄种人(华夏文明)(2017年3期)2017-08-22杂粮小镇之歌陶山(2016年4期)2016-03-01

推荐访问:杂粮 体外 酸奶

猜你喜欢