宾羽,张琦,王春庆,赵晓春,宋震,周常勇
利用酵母双杂交系统筛选与柑橘黄化脉明病毒CP互作的寄主因子
宾羽,张琦,王春庆,赵晓春,宋震,周常勇
西南大学柑桔研究所/国家柑桔工程技术研究中心,重庆 400712
【目的】柑橘黄化脉明病毒(citrus yellow vein clearing virus,CYVCV)是威胁我国柑橘产业稳定发展的主要病毒,但其在柑橘上的侵染和致病机制尚不清楚。本文以CYVCV的外壳蛋白(coat protein,CP)为诱饵筛选尤力克柠檬(Burm. f.)cDNA文库,利用生物信息学方法分析与其互作的寄主因子在病毒侵染和致病过程中可能发挥的作用。【方法】Trizol法提取尤力克柠檬叶片总RNA,用SMART法反转录合成First-Strand cDNA,以其为模板通过Long-Distance PCR获得ds cDNA,均一化处理后与线性化pGADT7质粒重组链接构建尤力克柠檬初级cDNA文库,重组质粒转化大肠杆菌DH10B获得尤力克柠檬大肠杆菌cDNA文库并对文库质量进行鉴定;
PCR扩增CYVCV的序列并构建到载体pGBKT7上,鉴定诱饵质粒对酵母细胞的毒性以及CP蛋白对酵母报告基因的自激活性。将尤力克柠檬cDNA文库质粒转化含有诱饵质粒pGBKT7-CP的Y2H Gold酵母菌株,共转化子依次涂布SD/-Leu-Trp、SD/-Leu-Trp-His/X--Gal和SD/-Leu-Trp-His-Ade/X--Gal平板,最终筛选蓝色且长势较好的阳性菌落,提取酵母质粒并测序比对获得候选基因,利用Uniprot在线网站的gene ontology(GO)注释候选基因,分析候选互作蛋白的生物学功能。根据分析结果,选取可能参与寄主抗病或症状发展的候选因子,扩增其CDS全长序列并构建到靶标载体pGADT7后分别与pGBKT7-CP共转化酵母细胞进行点对点酵母双杂交互作验证。【结果】尤力克柠檬大肠杆菌cDNA文库滴度为1.02×108cfu/mL,库容符合试验标准;
成功构建酵母双杂交诱饵载体pGBKT7-CP,该载体没有自激活性且对酵母菌没有毒性;
在SD/-Leu-Trp-His-Ade/X--Gal平板上筛选得到41个酵母阳性克隆,经序列相似性比对,去除重复,共筛得32个候选寄主因子;
GO通路注释结果表明这些寄主因子参与多个叶绿体相关的生物过程,包括碳水化合物代谢、光合作用、光刺激反应、代谢分解和生物合成等过程;
这32个寄主因子的分子功能多样,包括催化活性、水解酶活性、转移酶活性、蛋白质结合、转录因子活性和翻译因子活性等,其细胞组分涉及叶绿体、类囊体、膜、细胞质、细胞核和高尔基体等。从候选寄主因子中选取14个重要的蛋白与CP的一对一酵母双杂交验证结果表明,CP与这14个蛋白均发生互作。【结论】成功构建了尤力克柠檬cDNA文库,筛选出32个与CYVCV CP互作的尤力克柠檬寄主因子,分析重要的寄主蛋白功能,推测CYVCV CP通过与光系统II放氧强化复合物组分蛋白(PsbP)、光系统I叶绿素结合蛋白(Lhca3)和1,5-二磷酸核酮糖羧化酶小亚基(RbcS)等多个叶绿体相关蛋白的互作,影响光系统稳定、类囊体结构和叶绿素合成,从而导致光合作用降低以及叶绿体形态和功能受损,酵母点对点验证了CP与这些叶绿体相关因子的互作,这为揭示CYVCV CP参与病毒致病的分子机制提供了理论依据。
柑橘黄化脉明病毒;
尤力克柠檬;
酵母双杂交;
外壳蛋白;
寄主因子
【研究意义】由柑橘黄化脉明病毒(citrus yellow vein clearing virus,CYVCV)引起的柑橘黄脉病是对我国柑橘生产最具威胁性的新发病毒病之一[1]。该病毒自2009年在我国云南检出以来,传播迅速,目前在我国各柑橘主产区均有分布,且各类柑橘栽培品种均已发现有不同程度的带毒,其中以柠檬受害最为严重。该病毒引起柠檬叶片黄化、脉明、脱落,树势衰弱,产量逐年降低,甚至绝收,给我国四川、云南等柠檬产地已造成严重的经济损失[1-2]。此外,近年来在江西、福建等地的部分温州蜜柑果园,以及广西的砂糖橘果园和杂柑园,此病毒所造成的危害损失也日趋严重[1]。因此,研究CYVCV的致病机制是防控该病毒、保障我国柑橘产业可持续发展的迫切需求。Rehman等[3]研究发现CYVCV编码的外壳蛋白(coat protein,CP)是RNA沉默抑制子。本实验室前期研究发现柑橘在感染CYVCV早期,病毒滴度与柑橘症状的严重程度呈正相关[4],CP在病毒侵染寄主和致病过程中起重要作用[5]。因此明确与CYVCV CP互作的寄主因子,对解析CYVCV致病机制具有重要意义。【前人研究进展】CYVCV为正义单链RNA病毒,是芜菁黄花叶病毒目(Tymovirales)甲型线状病毒科()印度柑橘病毒属()的新成员[6]。在发现CYVCV之前,印度柑橘病毒属的唯一代表种为印度柑橘环斑病毒(Indian citrus ringspot virus,ICRSV),目前对于ICRSV致病机制的认识较浅薄,因此对于CYVCV致病机制研究的参考较少。CYVCV基因组包括5′端UTR,6个开放阅读框(open reading frame,ORF)、3′端UTR以及Poly(A)尾[6]。ORF1编码依赖RNA的RNA聚合酶(RNA-dependent RNA polymerase,RdRp)包含复制相关蛋白结构域。ORF2、ORF3和ORF4序列依次部分重叠,编码三基因连锁蛋白(triple gene block protein,TGB),ORF5编码34 kDa的外壳蛋白CP,包含马铃薯X病毒属()和香石竹潜隐病毒属()的保守结构域(pfam00286:aa 140—278)。ORF6与ORF5的3′端有部分序列重叠,编码一个23 kDa蛋白,包含正义单链RNA病毒核酸结合蛋白的保守结构域[6-7]。Rehman等[3]利用酵母双杂交(yeast two-hybrid system,Y2H)研究发现,CYVCV的CP与自身TGB1、TGB2以及TGB三基因连锁蛋白整体均发生互作,可能参与该病毒的运动,而且CP是一个强RNA沉默抑制子(RNA silencing suppressor,RSS)。以往研究表明,植物病毒编码的RSS通常作为病毒的致病决定因子或症状决定因子[8]。本实验室前期研究表明,不同柑橘品种在感染CYVCV的早期,植株的症状严重程度均与病毒滴度正相关[4],同时CP参与该病毒的侵染与致病[5],但关于CYVCV CP与寄主因子的互作研究尚未见报道。近年来,Y2H系统广泛应用于病毒蛋白与寄主因子互作研究,通过构建寄主cDNA文库,再以病毒蛋白作为诱饵从而筛选出与其互作的寄主因子,可为进一步研究病毒与寄主的互作机理提供理论依据[9]。【本研究切入点】植物病毒与寄主的互作研究是了解病毒致病机制的关键,也是植物病理学的研究热点[10]。以往研究表明,Y2H筛选可为解析植物病毒的侵染和致病机制提供重要理论依据。笔者实验室前期研究已证明CYVCV的CP参与病毒侵染与致病,而目前关于CP与寄主因子的互作研究尚未见报道。因此,筛选出与CP互作的寄主因子是探明CYVCV致病机理的关键。【拟解决的关键问题】构建尤力克柠檬叶片cDNA文库,以CYVCV CP蛋白为诱饵,通过酵母双杂交体系筛选出与CP互作的寄主因子,进而分析寄主因子的生物学功能,为解析病毒与寄主互作的生物学意义,探明CYVCV致病机理提供依据。
试验于2021—2022年在西南大学柑桔研究所脱毒中心实验室完成。
1.1 材料
尤力克柠檬种子由国家柑桔工程技术研究中心提供;
CYVCV侵染性克隆pCY-CYVCV221由西南大学柑桔研究所脱毒中心实验室构建保存;
酵母菌株Y2H gold,pGADT7、pGBKT7质粒,cDNA文库构建试剂盒购自Clontech公司;
I、H I限制性内切酶,Infusion无缝连接试剂盒购自赛默飞世尔科技(中国)有限公司;
酵母质粒小提试剂盒,大肠杆菌DH10B感受态细胞等购自北京索莱宝科技有限公司;
引物合成与序列测序由生工生物工程(上海)股份有限公司完成。
1.2 方法
1.2.1 尤力克柠檬接种CYVCV及cDNA文库的构建 将尤力克柠檬种子剥去内外种皮,播于植物MS固体培养基上,26 ℃黑暗培养,待种子萌发根长至3—5 cm(相应苗龄一般为7—10 d)即可用于接种。以CYVCV全长cDNA侵染性克隆pCY-CYVCV221通过农杆菌介导真空浸润接种尤力克柠檬幼苗,具体步骤参照文献[4,11]。接种后6个月,选取被感染柠檬植株顶端表现黄化脉明症状的嫩叶,Trizol法提取叶片总RNA,具体步骤详见说明书,使用1%琼脂糖凝胶电泳检测RNA的完整性,将RNA样本送武汉金开瑞生物工程有限公司构建尤力克柠檬cDNA文库。cDNA文库构建具体方法如下:尤力克柠檬叶片总RNA经SMART法反转录合成First-Stand cDNA,以其为模板通过Long-Distance PCR获得ds cDNA,均一化处理后与线性化猎物质粒pGADT7经Iufusion重组酶重组链接构建尤力克柠檬初级cDNA文库,重组质粒转化大肠杆菌DH10B获得尤力克柠檬大肠杆菌cDNA文库并对文库质量进行鉴定。
1.2.2 诱饵载体pGBKT7-CP的构建 设计CYVCV CP特异性引物(CPI-F/CP-H I-R),以pCY-CYVCV221质粒为模板扩增,胶回收基因片段,经I/H I双酶切后通过T4 DNA连接酶与线性化的pGBKT7连接并转化大肠杆菌DH10B,经菌落PCR及序列测定获得诱饵载体的阳性克隆,命名为pGBKT7-CP。
1.2.3 pGBKT7-CP毒性及自激活检测 pGBKT7-CP与pGADT7质粒通过LiAc法共转化酵母菌株Y2H gold后,涂布于一缺平板(SD/-Trp),30 ℃倒置培养3—5 d,挑取长势良好的单菌落,扩繁后提取酵母质粒转化大肠杆菌DH10B,以其为模板进行PCR鉴定,分析诱饵载体pGBKT7-CP(引物:CP-I-F/CP-H I-R)与pGADT7猎物空载质粒(引物:pGADT7- F/pGADT7-R)是否成功转化至Y2H gold。将含有pGBKT7-CP与pGADT7的酵母Y2H gold分别涂布二缺平板(SD/-Leu-Trp)、含有X--Gal的二缺平板(SD/ -Leu-Trp/X--Gal)和三缺平板(SD/-Leu-Trp-His)平板,30 ℃倒置培养3—5 d,观察平板菌落生长情况,分析pGBKT7-CP对酵母是否有毒性和自激活活性。
1.2.4 酵母双杂交筛选与CP互作的寄主蛋白 提取连接至pGADT7的尤力克柠檬cDNA文库质粒,并转化至含有pGBKT7-CP的Y2H gold酵母菌感受态细胞,涂布于二缺平板(SD/-Leu-Trp),30 ℃下倒置培养至克隆菌落出现,将共转化子涂布含有X--Gal的三缺平板,30 ℃下倒置培养3—5 d后,挑取平板上的蓝色单克隆,转接于新的含有X--Gal的四缺平板(SD/-Leu-Trp-His-Ade/X--Gal),30 ℃倒置培养3—5 d,观察酵母的生长和显色情况。
1.2.5 阳性克隆的鉴定 挑取四缺平板(X--Gal)上显蓝色的酵母单菌落,分别接入四缺液体培养基扩繁后提取质粒。以引物pGADT7-F/pGADT7-R对酵母质粒进行PCR鉴定,以PGADT7-T为阳性模板质粒,PGADT7空载为阴性模板。
1.2.6 阳性克隆的测序和生物信息学分析 将琼脂糖电泳检测条带大于阴性对照的酵母质粒转化大肠杆菌DH10B,送生工生物工程(上海)股份有限公司测序。将测序结果在NCBI数据库(http://blast.ncbi. nlm.nih.gov/Blast.Cgi)中进行Blast分析,通过Uniprot在线网站GO通路注释(http://www.uniprot.org/)对寄主候选因子进行功能注释。
1.2.7 酵母双杂交验证CP与寄主因子的互作 根据测序对比和GO分析结果,选取32个候选寄主因子中的14个重要蛋白(克隆号:1—3、5、6、9、20—25、27和29),根据NCBI中的序列设计特异引物(表1)。利用TaKaRa公司的反转录酶AMV将1.2.1中的尤力克柠檬总RNA反转录成cDNA,以cDNA为模板分别扩增这14个蛋白的CDS全长序列,然后分别将其插入pGADT7载体构建靶标质粒。将需要验证互作的靶标和诱饵质粒共转化酵母菌涂布于二缺平板,30 ℃倒置培养3—5 d至菌落出现;
从二缺培养基中挑取酵母单菌落,悬浮于50 μL ddH2O中,使OD600约为1.0,再倍比稀释成浓度为1.0×10-1、1.0×10-2、1.0×10-3、1.0×10-4的菌液,各取10 μL的菌液点滴培养于含有5 mmol·L-13-AT(3-amino-1,2,4-triazole)的三缺培养基上,30 ℃倒置培养3—5 d,观察酵母生长情况确定互作结果。
2.1 cDNA文库的质量检测
提取感病尤力克柠檬总RNA,琼脂糖凝胶电泳显示18S和28S条带清晰,完整性好(图1-A)。NanoDrop检测RNA OD260/OD280=2.13,OD260/OD230=2.11,RNA浓度为488.5 ng·μL-1,说明RNA质量较好,可以用于文库构建。将总RNA反转录并经Long-Distance PCR获得ds cDNA,均一化处理后的ds cDNA进行琼脂糖凝胶电泳显示其呈弥散状分布,其片段大小分布范围为1—10 kb(图1-B)。文库质粒转入大肠杆菌DH10B,随机挑取16个克隆,PCR扩增插入片段,平均长度>1.5 kb(图1-C)。尤力克柠檬大肠杆菌cDNA文库库容鉴定结果显示,文库滴度为1.02×108cfu/mL(>1 ×107cfu/mL),库容符合后续酵母双杂交试验标准。
2.2 诱饵载体pGBKT7-CP的构建及转化
以pCY-CYVCV221为模板,用引物CP-I-F/CP-H I-R进行PCR扩增,可扩增出条带约1 000 bp的特异性条带,片段大小与预期结果相符。将此特异性条带克隆到诱饵载体pGBKT7上,PCR筛选pGBKT7-CP阳性克隆,通过测序验证基因序列和插入方向正确,说明正确构建到pGBKT7载体上。pGBKT7-CP质粒转化酵母菌株Y2H gold,提取酵母质粒,PCR扩增得到大小约为1 000 bp的特异性条带,表明pGBKT7-CP质粒已成功转化到Y2H gold。
表1 PCR引物
2.3 诱饵载体pGBKT7-CP的毒性及自激活检测
pGBKT7-CP与pGADT7共转化酵母Y2H gold感受态细胞,转化子涂布SD/-Leu-Trp平板有菌落生长,菌落长势良好,pGBKT7-CP质粒对酵母细胞无毒性;
转化子涂布SD/-Leu-Trp/X--Gal平板有菌落生长不变蓝,涂布SD/-Leu-Trp-His平板无菌落生长(图2),表明诱饵载体不能激活酵母细胞报告基因的表达,可进行后续筛库试验。
A:总RNA琼脂糖凝胶电泳Total RNA of lemon。B:柠檬ds cDNA纯化后的电泳图Electrophoresis of purified ds cDNA of lemon,1:纯化后的ds cDNA Purified ds cDNA。C:cDNA文库插入片段的PCR鉴定PCR identification of inserts in the cDNA library,1—16:随机挑选的16个文库克隆16 clones of cDNA library picked randomly;
17:阳性对照Positive control;
18:H2O。M:DNA分子标记DNA Marker
A:二缺培养基SD/-Leu-Trp medium;
B:含有X-α-Gal的二缺培养基SD/-Leu-Trp/X-α-Gal medium;
C:三缺培养基SD/-Leu-Trp-His medium
2.4 尤力克柠檬cDNA文库中与CP互作的寄主因子筛选
将尤力克柠檬cDNA文库质粒转化到含有pGBKT7-CP诱饵载体的酵母菌Y2H gold感受态细胞中,转化产物经二缺、三缺(含X--Gal)和四缺(含X--Gal)平板顺次筛选后,最终在四缺(含X--Gal)培养基上筛选到72个生长状况良好且显蓝色的菌落(图3)。
2.5 寄主因子的扩增及测序分析
扩繁72个显蓝色的菌落,分别提取质粒,PCR筛选阳性克隆,共获得42个阳性克隆(图4)。PCR产物测序并进行序列比对,除去重复后,共获得32个与CP互作的候选蛋白(表2)。利用Uniprot在线网站的GO通路注释这32个柠檬寄主因子(图5),发现这32个寄主因子参与了16种生物过程,包括光合作用、光刺激反应、胁迫反应、碳水化合物代谢过程、转运、化学刺激响应、蛋白质代谢过程、代谢过程、代谢产物前体和能量的合成、细胞过程、细胞成分组织、分解代谢过程、生物合成过程、含碱基化合物的代谢过程、细胞稳态和其他生物过程;
其分子功能有13种,包括催化活性、绑定、水解酶活性、核苷酸绑定、转运体活性、蛋白质结合、转移酶活性、DNA 结合、DNA结合转录因子活性、RNA绑定、翻译因子活性、酶调节活性和其他分子功能;
其涉及11种细胞组分,包括细胞质、膜、叶绿体、类囊体、核仁、细胞质、细胞外区域、内小体、高尔基体和其他细胞成分。
A:含有X-α-Gal的三缺培养基SD/-Leu-Trp-His/X-α-Gal medium。B、C:含有X-α-Gal的四缺培养基SD/-Leu-Trp-His-Ade/X-α-Gal medium;
+:阳性对照Positive control;
-:阴性对照Negative control
M:DNA分子标记DNA Marker;
1—72:72个酵母双杂交克隆质粒Plasmids of 72 clones obtained by Y2h;
+:阳性对照Positive control;
-:阴性对照Negative control
2.6 CP与寄主因子一对一酵母双杂交互作验证
结合植物蛋白功能研究的已有报道,从32个候选寄主因子中选取了可能参与柠檬抗病和症状发展的14个蛋白,分别扩增其CDS全长序列并测序验证后构建到靶标载体pGADT7上,与诱饵质粒pGBKT7-CP进行一对一酵母双杂交互作验证。将不同质粒组合分别共转化酵母,再将其点种到二缺和三缺平板上验证CP与特定寄主蛋白的互作情况。pGADT7-1代表的是表2中1号克隆对应的寄主因子靶标质粒,其余靶标质粒名称对应的寄主因子以此类推。结果如图6所示,含有诱饵质粒pGBKT7-CP和靶标质粒pGADT7-寄主因子的酵母菌能够在三缺筛选培养基上生长,其长势和阳性对照pGBKT7-53+pGADT7接近,而pGBKT7-CP与靶标空载质粒pGADT7和阴性对照都不能在该培养基上生长,表明CP与这14个寄主蛋白在酵母体内确实存在互作。
表2 以CYVCV CP为诱饵对柠檬cDNA文库酵母双杂交筛选所获互作候选蛋白
分子功能Molecular function:1:催化活性catalytic activity;
2:结合binding;
3:水解酶活性hydrolase activity;
4:其他分子功能other molecular function;
5:核苷酸结合nucleotide binding;
6:转运活性transporter activity;
7:蛋白结合protein binding;
8:转移酶活性transferase activity;
9:DNA结合DNA binding;
10:DNA结合翻译因子活性DNA-binding transcription factor activity;
11:RNA结合RNA binding;
12:转录因子活性Translation factor activity;
13:酶调节活性Enzyme regulator activity。代谢过程Biological process:14:代谢过程Metabolic process;
15:碳水化合物代谢过程Carbohydrate metabolic process;
16:其他生物过程Other biological process;
17:运输Transport;
18:应激响应Response to stress;
19:对化学刺激的反应Response to chemical;
20:蛋白质代谢过程protein metabolic process;
21:光合作用photosynthesis;
22:前体代谢物和能量的生成generation of precursor metabolites and energy;
23:细胞过程cellular process;
24:细胞成分组织cellular component organization;
25:分解代谢过程Catabolic process;
26:生物合成过程Biosynthetic process;
27:对光刺激的反应Response to light stimulus;
28:含核酶的化合物代谢过程Nucleobase-containing compound metabolic process;
29:胞内稳态Cellular homeostasis。细胞组分Cellular component:30:其他细胞组分other cellular component;
31:细胞质cytoplasm;
32:膜membrane;
33:叶绿体chloroplast;
34:类囊体thylakoid;
35:核仁nucleolus;
36:胞浆cytosol;
37:胞外区域extracellular region;
38:细胞核nucleus;
39:内涵体endosome;
40:高尔基体golgi apparatus
植物病毒的外壳蛋白(CP)作为病毒粒子的结构蛋白,其经典功能是包被病毒基因组[12]。随着对植物病毒的深入研究,越来越多的科研人员发现CP在许多植物病毒中是作为多功能蛋白,几乎参与病毒侵染的全过程[8]。CYVCV CP是一个强沉默抑制子,与自身TGB蛋白互作可能参与病毒运动[3],同时CP是该病毒的致病相关因子[5],但目前CP参与该病毒侵染和致病的作用机理尚不清楚。本研究建立了高质量的尤力克柠檬cDNA文库,以CYVCV CP为诱饵蛋白,从感染CYVCV的尤力克柠檬酵母cDNA文库中筛选与CP互作的寄主因子,为阐明CP参与CYVCV致病的作用机理,解析该病毒致病的分子机制打下了理论基础。
3.1 叶绿体是CYVCV的重要靶标
本研究共筛得与CP互作的32个后续寄主因子,基于寄主因子GO功能注释选取了14个可能参与寄主抗病和症状发展的寄主蛋白分别与CP进行了一对一酵母双杂交验证,结果表明CP与这14个蛋白均存在互作。寄主因子GO功能注释显示,与CP发生互作的寄主蛋白多数为叶绿体相关因子。本研究室马丹丹[13]与邓雨青[14]前期研究发现,尤力克柠檬感染CYVCV后,显症叶片叶绿体出现畸形、类囊体结构模糊、片层结构散乱和基粒排列紊乱等亚细胞病理变化,结合本研究结果进一步表明叶绿体是CYVCV的重要靶标。植物病毒与寄主叶绿体的互作是植物病理学研究的热点和难点。叶绿体是植物细胞中最有活力的细胞器之一,其进行光合作用、合成植物主要激素,在植物防御病毒反应中发挥着重要的积极作用[3,8,10,15]。在植物细胞内,病毒面临最严重的威胁之一是植物的RNA沉默,为了对抗这一机制,缺乏沉默机制且具有双膜结构的叶绿体就是许多病毒的靶标,当病毒突破叶绿体防御后,通常造成叶绿体结构和功能的破坏,进而导致寄主病症的形成。因此,植物病毒与寄主叶绿体的互作通常在病毒致病与寄主抗病的竞备赛中起着关键作用[10,16]。马铃薯X病毒(potato virus X,PVX)的CP可与寄主叶绿体质体蓝素发生互作,进一步研究发现二者的互作导致寄主症状的形成[17]。番茄花叶病毒(tomato mosaic virus,ToMV)的CP可与寄主铁氧还蛋白1(Fd I)互作从而诱导寄主症状的形成[18]。
3.2 植物病毒蛋白与叶绿体RbcS互作参与病毒侵染与致病
1, 5-二磷酸核酮糖羧化酶/加氧酶(RubisCO)在植物中含量丰富,占叶绿体可溶蛋白的50%以上[19]。RubisCO是卡尔文循环的起始酶,也是光呼吸反应中的第一个酶,调节光合作用和光呼吸的效率,其催化活性的降低可诱导叶绿体走向衰老降解[20-21]。在高等植物中,RubisCO是由8个大亚基(RbcL)和8个小亚基(RbcS)组成的多聚体。其中,RbcL由叶绿体基因组编码;
RbcS由核基因编码,在细胞质中合成后转运进叶绿体,最终定位在叶绿体中以完成RubisCO的组装[22]。RbcS在细胞中的有效含量可正向调节的基因表达量并决定RubisCO全酶的组装量,影响光合作用效率,对叶绿体发育具有重要作用[23]。洋葱黄矮病毒(onion yellow dwarf virus,OYDV)、大豆花叶病毒(soybean mosaic virus,SMV)、芜菁花叶病毒(turnip mosaic virus,TuMV)和胡葱黄条病毒(shallot yellow stripe virus,SYSV)编码的P3蛋白可与寄主RbcS互作,互作可能影响RubisCO的正常功能,从而有助于症状的发展[24]。ToMV编码的运动蛋白(MP)可与烟草RbcS互作,沉默的烟草接种ToMV后局部感染症状加重,接种叶片坏死,但病毒运动受限制,系统性症状推迟,表明RbcS在ToMV的运动和烟草抗病毒防御中起着至关重要的作用[25]。在植物学和植物病理学中对RbcL研究较多,对RbcS了解较少,同时尚无RbcS与植物病毒外壳蛋白互作的研究报道。本研究以CYVCV CP为诱饵蛋白对尤力克柠檬cDNA文库进行酵母双杂交筛选并通过一对一酵母双杂交验证了CP与柠檬RbcS的互作,扩宽了对植物病毒CP与寄主因子互作的认知。
3.3 植物病毒蛋白与叶绿体PsbP互作参与病毒侵染与致病
叶绿体光系统II(PSII)放氧强化蛋白2(PsbP)是PSII中放氧复合体(OEC)的组分之一,与PSII的类囊体膜固有蛋白结合,面向类囊体腔内,其积累量直接影响PSII的活性[26-28]。沉默烟草的PSII复合体虽仍能积累但活性显著降低,而沉默拟南芥的PSII复合体不仅活性显著降低且组装受阻。基因沉默植株与野生型相比叶色偏白或褪绿,植株生长迟缓,叶绿体结构紊乱,出现类囊体膜结构异变,类囊体片层模糊以及基粒垛叠显著紊乱等[29-31]。苜蓿花叶病毒(alfalfa mosaic virus,AMV)CP可与拟南芥PsbP互作,互作发生在细胞质中;
过表达可显著减少AMV在拟南芥中的积累,表明AMV CP与PsbP互作可能限制了PsbP介导的抗病毒作用从而有利于病毒复制[32]。水稻条纹病毒(rice stripe virus,RSV)编码的致病特异性蛋白(SP)可与水稻和本氏烟的PsbP互作,沉默这两种植物中的可导致植株感染RSV后症状增强及其体内病毒积累量增加;
PsbP在野生型本氏烟中主要积累定位于叶绿体中,而在RSV SP表达的情况下,大多数PsbP被招募聚集于细胞质中,表明SP限制了PsbP进入叶绿体中,导致PsbP功能受阻从而诱导RSV症状的形成[33]。此外,前期转录学研究发现柠檬在CYVCV侵染早期下调表达[34],表明CYVCV不仅在蛋白水平与PsbP互作,还在转录水平影响表达,PsbP的功能受阻可能与CYVCV的症状发生有关。
本研究通过酵母双杂交筛选到尤力克柠檬的RbcS和PsbP等多个叶绿体相关蛋白为CYVCV CP的寄主互作候选因子,表明叶绿体是CYVCV CP的主要靶标,推测CP通过与多个叶绿体相关蛋白互作,导致叶绿体结构和功能的改变进而限制叶绿体介导的抗病毒作用,从而诱导CYVCV症状的发生并增强CYVCV在植株体内的积累,这种推测以及CP与叶绿体相关蛋白互作的分子机制需进一步的试验验证。
成功构建了高质量的尤力克柠檬cDNA文库,筛选得到32个与CYVCV CP互作的寄主因子,这些寄主因子生物功能多样,且其中多数为叶绿体相关蛋白,它们可能在协助寄主抵御病毒侵染、减轻发病症状等方面发挥重要作用。CYVCV CP可能通过与这些寄主因子互作,影响寄主因子功能,这为深入探讨CYVCV CP与寄主互作的分子机制以及解析二者互作在病毒侵染和症状发展中的生物学意义提供了理论依据。
[1] Zhou Y, Chen H M, Cao M J, Wang X F, Jin X, Liu K H, Zhou C Y. Occurrence, distribution, and molecular characterization of citrus yellow vein clearing virus in China. Plant Disease, 2017, 101(1): 137-143.
[2] Chen H M, Li Z A, Wang X F, Zhou Y, Tang K Z, Zhou C Y, Zhao X Y, Yue J Q. First report of citrus yellow vein clearing virus on lemon in Yunnan, China. Plant Disease, 2014, 98(12): 1747.
[3] Rehman A U, Li Z R, Yang Z K, Waqas M, Wang G P, Xu W X, Li F, Hong N. The coat protein of citrus yellow vein clearing virus interacts with viral movement proteins and serves as an RNA silencing suppressor. Viruses, 2019, 11(4): 329.
[4] Bin Y, Xu J, Duan Y, Ma Z, Zhang Q, Wang C, Su Y, Jiang Q, Song Z, Zhou C. The titer of citrus yellow vein clearing virus is positively associated with the severity of symptoms in infected citrus seedlings. Plant disease, 2022, 106(3): 828-834.
[5] 宾羽, 宋震, 崔甜甜, 周常勇. 柑橘黄化脉明病毒突变体及其构建方法: ZL201910939750.8[P]. (2019-12-31) [2023-03-02].
BIN Y, SONG Z, CUI T T, ZHOU C Y. Citrus yellow vein clearing virus mutant and its construction method: ZL201910939750.8[P]. (2019-12-31) [2023-03-02]. (in Chinese)
[6] Loconsole G, Onelge N, Potere O, Giampetruzzi A, Bozan O, Satar S, De Stradis A, Savino V, Yokomi R K, Saponari M. Identification and characterization of citrus yellow vein clearing virus, a putative new member of the genus. Phytopathology, 2012, 102(12): 1168-1175.
[7] Song Z, Kurth E G, Peremyslov V V, Zhou C Y, Dolja V V. Molecular characterization of a citrus yellow vein clearing virus strain from China. Archives of Virology, 2015, 160(7): 1811-1813.
[8] Ma X F, Hong N, Moffett P, Zhou Y J, Wang G P. Functional analysis of apple stem pitting virus coat protein variants. Virology Journal, 2019,16(1): 20.
[9] 李帅, 蒋西子, 梁伟芳, 陈思涵, 张享享, 左登攀, 胡亚会, 江彤. 利用酵母双杂交系统筛选与草莓镶脉病毒P6蛋白互作的森林草莓寄主因子. 中国农业科学, 2017, 50(18): 3519-3528. doi: 10.3864/j.issn.0578-1752.2017.18.008.
LI S, JIANG X Z, LIANG W F, CHEN S H, ZHANG X X, ZUO D P, HU Y H, JIANG T. Screening of the host factors of woodland strawberry interacting with P6 of strawberry vein banding virus by yeast two-hybrid system. Scientia Agricultura Sinica, 2017, 50(18): 3519-3528. doi: 10.3864/j.issn.0578-1752.2017.18.008. (in Chinese)
[10] Zhao J, Zhang X, Hong Y, Liu Y. Chloroplast in plant-virus interaction. Frontiers in Microbiology, 2016, 7: 1565.
[11] Cui T, Bin Y, Yan J, Mei P, Li Z, Zhou C, Song Z. Development of infectious cDNA clones of citrus yellow vein clearing virus using a novel and rapid strategy. Phytopathology, 2018, 108(10): 1212-1218.
[12] Qiu Y, Zhang Y, Wang C, Lei R, Wu Y, Li X, Zhu S. Cucumber mosaic virus coat protein induces the development of chlorotic symptoms through interacting with the chloroplast ferredoxin I protein. Scientific Reports, 2018, 8(1): 1205.
[13] 马丹丹. 柑橘黄化脉明病毒在尤力克柠檬中的时空分布及细胞结构变化研究[D]. 重庆: 西南大学, 2016.
MA D D. Spatial and temporal distribution of citrus yellow vein clearing virus and cell structural changes in infected Euneka lemon[D]. Chongqing: Southwest University, 2016. (in Chinese)
[14] 邓雨青. 柑橘黄化脉明病毒诱导尤力克柠檬细胞程序性死亡研究[D]. 重庆: 西南大学, 2017.
DENG Y Q. Study on programmed cell death in Euneka lemon induced by citrus yellow vein clearing virus[D]. Chongqing: Southwest University, 2017. (in Chinese)
[15] Mathioudakis M M, Rodriguez-Moreno L, Sempere R N, Aranda M A, Livieratos I. Multifaceted capsid proteins: Multiple interactions suggest multiple roles for pepino mosaic virus capsid protein. Molecular Plant-Microbe Interactions, 2014, 27(12): 1356-1369.
[16] Bhattacharyya D, Chakraborty S. Chloroplast: the Trojan horse in plant-virus interaction. Molecular Plant Pathology, 2018, 19(2): 504-518.
[17] Qiao Y, Li H F, Wong S M, Fan Z F. Plastocyanin transit peptide interacts with potato virus X coat protein, while silencing of plastocyanin reduces coat protein accumulation in chloroplasts and symptom severity in host plants. Molecular Plant-Microbe Interactions, 2009, 22(12): 1523-1534.
[18] Sun X, Li Y, Shi M, Zhang N, Wu G, Li T, Qing L, Zhou C.binding and bimolecular fluorescence complementation assays suggest an interaction between tomato mosaic virus coat protein and tobacco chloroplast ferredoxin I. Archives of Virology, 2013, 158(12): 2611-2615.
[19] Gruber A V, Feiz L. Rubisco assembly in the chloroplast. Frontiers in Molecular Biosciences, 2018, 5: 24.
[20] Kawakami N, Watanabe A. Translatable mRNAs for chloroplast- targeted proteins in detached radish cotyledons during senescence in darkness. Plant and Cell Physiology, 1993, 34(5): 697-704.
[21] Roy H. Rubisco assembly: A research memoir//Biswal B, Krupinska K, Biswal U C. Plastid Development in Leaves during Growth and Senescence. Dordrecht: Springer Netherlands, 2013: 117-129.
[22] Atkinson N, Leitao N, Orr D J, Meyer M T, Carmo-Silva E, Griffiths H, Smith A M, McCormick A J. Rubisco small subunits from the unicellular green algacomplement Rubisco-deficient mutants of. New Phytologist, 2017, 214(2): 655-667.
[23] Suzuki Y, Makino A. Availability of Rubisco small subunit up-regulates the transcript levels of large subunit for stoichiometric assembly of its holoenzyme in rice. Plant Physiology, 2012, 160(1): 533-540.
[24] Lin L, Luo Z P, Yan F, Lu Y W, Zheng H Y, Chen J P. Interaction between potyvirus P3 and ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) of host plants. Virus Genes, 2011, 43(1): 90-92.
[25] Zhao J P, Liu Q, Zhang H L, Jia Q, Hong Y G, Liu Y L. The Rubisco small subunit is involved in tobamovirus movement and-2-mediated extreme resistance. Plant Physiology, 2013, 161(1): 374-383.
[26] Barber J, Nield J. Organization of transmembrane helices in photosystem II: comparison of plants and cyanobacteria. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 2002, 357(1426): 1329-1335.
[27] Ifuku K, Yamamoto Y, Ono T, Ishihara S, Sato F. PsbP protein, but not PsbQ protein, is essential for the regulation and stabilization of photosystem II in higher plants. Plant Physiology, 2005, 139(3): 1175-1184.
[28] Ifuku K, Ishihara S, Shimamoto R, Ido K, Sato F. Structure, function, and evolution of the PsbP protein family in higher plants. Photosynthesis Research, 2008, 98(1/3): 427-437.
[29] Ido K, Ifuku K, Yamamoto Y, Ishihara S, Murakami A, Takabe K, Miyake C, Sato F. Knockdown of the PsbP protein does not prevent assembly of the dimeric PSII core complex but impairs accumulation of photosystem II supercomplexes in tobacco. Biochimica et Biophysica Acta-Bioenergetics, 2009, 1787(7): 873-881.
[30] Ifuku K. The PsbP and PsbQ family proteins in the photosynthetic machinery of chloroplasts. Plant Physiology and Biochemistry, 2014, 81: 108-114.
[31] Ifuku K, Noguchi T. Structural coupling of extrinsic proteins with the oxygen-evolving center in photosystem II. Frontiers in Plant Science, 2016, 7: 84.
[32] Balasubramaniam M, Kim B S, Hutchens-Williams H M, Loesch-Fries L S. The photosystem II oxygen-evolving complex protein PsbP interacts with the coat protein of alfalfa mosaic virus and inhibits virus replication. Molecular Plant-Microbe Interactions, 2014, 27(10): 1107-1118.
[33] Kong L, Wu J, Lu L, Xu Y, Zhou X. Interaction between rice stripe virus disease-specific protein and host PsbP enhances virus symptoms. Molecular Plant, 2014, 7(4): 691-708.
[34] Bin Y, Zhang Q, Su Y, Wang C, Jiang Q, Song Z, Zhou C. Transcriptome analysis ofinfected with citrus yellow vein clearing virus. BMC Genomics, 2023, 24(1): 65.
Screening of the Host Factors Interacting with CP of Citrus yellow vein clearing virus by Yeast Two-Hybrid System
BIN Yu, ZHANG Qi, WANG ChunQing, ZHAO XiaoChun, SONG Zhen, ZHOU ChangYong
Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712
【Objective】Citrus yellow vein clearing virus (CYVCV) is one of the viruses mostly threatening the stable development of citrus industry in China, but its infection and pathogenic mechanism in citrus is still unclear. In this study, the coat protein (CP) of CYVCV was used as a bait to screen the Eureka lemon (Burm. f.) cDNA library, and the function of obtained host factors in the interaction between host and virus was analyzed by bioinformatics method.【Method】The total RNA of Eureka lemon leaves was extracted by the Trizol method, and then reversely transcribed to the first-stand cDNA with SMART method, which was used as a template for obtaining ds cDNA through long-distance PCR. After homogenization, the ds cDNA fragments were ligated to pGADT7 plasmid vector by recombination junctions to construct the primary cDNA library of Eureka lemon. The recombinant plasmids were transfected intoDH10B to obtain thecDNA library of Eureka lemon, and its quality was identified. Simultaneously, thesequence of CYVCV was amplified by PCR and ligated into the yeast two-hybrid (Y2H) bait vector pGBKT7, and the plasmids of pGBKT7-CP and pGADT7 were co-transfected into yeast Y2H Gold. The positive yeast clones were grown on the plate of SD/-Trp, SD/-Leu-Trp, SD/-Leu-Trp/X--Gal and SD/-Leu-Trp-His medium, respectively, and then the growth situation of the yeast was tested to identify the toxicity of pGBKT7-CP on yeast Y2H Gold and the self-activating effect of pGBKT7-CP on the reporter gene of yeast was analyzed. Then the Y2H Gold containing bait vector pGBKT7-CP was transformed with the primary cDNA library of Eureka lemon, the co-transformed yeasts were coated on the plate of SD/-Leu-Trp, SD/-Leu-Trp-His/X--Gal and SD/-Leu-Trp-His-Ade/X--Gal medium in turn. Finally, the blue and well grown positive clones were selected. The plasmids of positive yeast clones were extracted and sequenced. The candidate genes were preliminarily compared in the GenBank, and the interacted protein factors were annotated and the protein’s biological functions were analyzed with gene ontology (GO) pathway of Uniprot online websites. According to the results of the analysis, candidate factors that may be involved in host disease resistance or symptom development were selected, their CDS full-length sequences were amplified and constructed into the target vector pGADT7 and then were verified with pGBKT7-CP by one for one in yeast, respectively.【Result】The titer of the Eureka lemon-cDNA library was 1.02×108cfu/mL, and it demonstrated that the cDNA library measured up to the experiment standard. The bait vector of pGBKT7-CP was constructed, which had no ability to activate the reporter gene and had no virulence to the yeast. The 41 positive clones were finally selected by using the SD/-Leu-Trp-His-Ade/X--Gal medium. After sequence similarity comparison, removing the repetitive sequences, the vector sequences and the frameshift sequences,the 32 host factors that interacted with CYVCV CP were screened. The GO pathway annotation results indicated that these host factors were involved in several chloroplast-related biological processes, including photosynthesis, metabolic process, carbohydrate metabolic process, response to light stimulus, etc. The molecular functions of the 32 host factors were multiple, including catalytic activity, hydrolase activity, transferase activity, protein binding, dna-binding transcription factor activity, and translation factor activity, etc. Moreover, the cell components of the 32 host factors were involved in the cytoplasm, membrane, chloroplast, thylakoid, nucleolus, and golgi apparatus, etc. Validation of one-to-one yeast two-hybrid crosses of 14 important proteins selected from candidate host factors with CP showed that CP interacted with all 14 proteins.【Conclusion】The cDNA library of Eureka lemon was constructed successfully, and 32 host factors of Eureka lemon interacted with CYVCV CP were preliminarily screened. According to the results, the function of the important proteins was analyzed. It was presumed that CYVCV CP affects photosystem stability, thylakoid structure and chlorophyll synthesis by interacting with multiple chloroplast-related proteins such as oxygen-evolving enhancer protein 2 (PsbP), chlorophyll a-b binding protein 8 (Lhca3) and ribulose bisphosphate carboxylase small subunit (RbcS), resulting in reduced photosynthesis and damaged chloroplast morphology and function. The interaction of CP with these chloroplast-associated factors was separately verified one-to-one in yeast, which will provide a theoretical basis for revealing the molecular mechanism of CYVCV CP in viral pathogenicity.
citrus yellow vein clearing virus (CYVCV); Eureka lemon; yeast two-hybrid; coat protein; host factor
10.3864/j.issn.0578-1752.2023.10.006
2023-03-02;
2023-03-08
重庆市自然科学基金(CSTB2022NSCQ-MSX0752)、重庆市自然科学基金博士后项目(cstc2021jcyj-bshX0017)
宾羽,E-mail:bin20196040@swu.edu.cn。通信作者宋震,E-mail:songzhen@cric.cn。通信作者周常勇,E-mail:zhoucy@cric.cn
(责任编辑 岳梅)
猜你喜欢双杂交力克叶绿体酵母双杂交技术筛选与绵羊微管解聚蛋白相互作用的蛋白湖南农业大学学报(自然科学版)(2022年2期)2022-05-11受青枯菌诱导的花生根酵母双杂交文库构建和AhRRS5互作蛋白的筛选作物学报(2021年11期)2021-08-31王力克风景油画作品齐鲁艺苑(2021年2期)2021-05-10酵母双杂交技术研究进展山东畜牧兽医(2021年6期)2021-01-11王力克《2020 年初春》齐鲁艺苑(2020年2期)2020-05-18力克推出Modaris®V8解决方案 加快时装产品开发速度纺织服装流行趋势展望(2016年6期)2016-05-04南方红豆杉叶绿体非编码序列PCR体系优化及引物筛选广西林业科学(2016年1期)2016-03-20酵母双杂交技术应用进展生物技术进展(2015年5期)2015-04-09茶树叶绿体DNA的PCR-RFLP反应体系优化食品科学(2013年6期)2013-03-11烟草叶绿体密码子的偏好性及聚类分析中国烟草学报(2012年2期)2012-04-09