当前位置:舍宁秘书网 > 专题范文 > 公文范文 > 高二年级下册数学教案

高二年级下册数学教案

时间:2022-05-27 16:00:03 来源:网友投稿

【导语】在学习新知识的同时还要复习以前的旧知识,肯定会累,所以要注意劳逸结合。只有充沛的精力才能迎接新的挑战,才会有事半功倍的学习。大海范文网高二频道为你整理了《高二年级下册数学教案》希望对你的学习有所帮助!

高二年级下册数学教案【篇一】


  一、教学目标

  1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。

  2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。

  3、通过对四种命题之间关系的学习,培养学生逻辑推理能力

  4、初步培养学生反证法的数学思维。

  二、教学分析

  重点:四种命题;难点:四种命题的关系

  1.本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。

  2.教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题,

  3.“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。

  三、教学手段和方法(演示教学法和循序渐进导入法)

  1.以故事形式入题

  2多媒体演示

  四、教学过程

  (一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。

  这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!

  设计意图:创设情景,激发学生学习兴趣

  (二)复习提问:

  1.命题“同位角相等,两直线平行”的条件与结论各是什么?

  2.把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?

  3.原命题真,逆命题一定真吗?

  “同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.

  学生活动:

  口答:(l)若同位角相等,则两直线平行;(2)若一个四边形是正方形,则它的四条边相等.

  设计意图:通过复习旧知识,打下学习否命题、逆否命题的基础.

  (三)新课讲解:

  1.命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。

  2.把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。

  3.把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。

高二年级下册数学教案【篇二】

  学习目标

  1.回顾在平面直角坐标系中刻画点的位置的方法.

  2.能够建立适当的直角坐标系,解决数学问题.

  学习过程

  一、学前准备

  1、通过直角坐标系,平面上的与(),曲线与建立了联系,实现了。

  2、阅读P3思考得出在直角坐标系中解决实际问题的过程是:

  二、新课导学

  ◆探究新知(预习教材P1~P4,找出疑惑之处)

  问题1:如何刻画一个几何图形的位置?

  问题2:如何创建坐标系?

  问题3:(1).如何把平面内的点与有序实数对(x,y)建立联系?(2).平面直角坐标系中点和有序实数对(x,y)是怎样的关系?

  问题4:如何研究曲线与方程间的关系?结合课本例子说明曲线与方程的关系?

  问题5:如何刻画一个几何图形的位置?

  需要设定一个参照系

  (1)、数轴它使直线上任一点P都可以由惟一的实数x确定

  (2)、平面直角坐标系:在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定

  (3)、空间直角坐标系:在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P都可以由惟一的实数对(x,y,z)确定

  (4)、抽象概括:在平面直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:A.曲线C上的点坐标都是方程f(x,y)=0的解;B.以方程f(x,y)=0的解为坐标的点都在曲线C上。那么,方程f(x,y)=0叫作曲线C的方程,曲线C叫作方程f(x,y)=0的曲线。

  问题6:如何建系?

  根据几何特点选择适当的直角坐标系。

  (1)如果图形有对称中心,可以选对称中心为坐标原点;

  (2)如果图形有对称轴,可以选择对称轴为坐标轴;

  (3)使图形上的特殊点尽可能多的在坐标轴上。

推荐访问:下册 高二年级 数学教案

最新推荐

猜你喜欢