初中八年级数学教学课件通用一、教材分析本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。二、教学目标1、知识目下面是小编为大家整理的初中八年级数学教学课件通用4篇,供大家参考。
初中八年级数学教学课件通用篇1
一、教材分析
本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。
二、教学目标
1、知识目标:了解多边形内角和公式。
2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。
3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。
4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。
三、教学重、难点
重点:探索多边形内角和。
难点:探索多边形内角和时,如何把多边形转化成三角形。
四、教学方法:引导发现法、讨论法
五、教具、学具
教具:多媒体课件
学具:三角板、量角器
六、教学媒体:大屏幕、实物投影
七、教学过程:
(一)创设情境,设疑激思
师:大家都知道三角形的内角和是180,那么四边形的内角和,你知道吗?
活动一:探究四边形内角和。
在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。
方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360。
方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360。
接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。
师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?
活动二:探究五边形、六边形、十边形的内角和。
学生先独立思考每个问题再分组讨论。
关注:
(1)学生能否类比四边形的方式解决问题得出正确的结论。
(2)学生能否采用不同的方法。
学生分组讨论后进行交流(五边形的内角和)
方法1:把五边形分成三个三角形,3个180的和是540。
方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180的和减去一个周角360。结果得540。
方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180的和减去一个平角180,结果得540。
方法4:把五边形分成一个三角形和一个四边形,然后用180加上360,结果得540。
师:你真聪明!做到了学以致用。
交流后,学生运用几何画板演示并验证得到的方法。
得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720,十边形内角和是1440。
(二)引申思考,培养创新
师:通过前面的讨论,你能知道多边形内角和吗?
活动三:探究任意多边形的内角和公式。
思考:
(1)多边形内角和与三角形内角和的关系?
(2)多边形的边数与内角和的关系?
(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?
学生结合思考题进行讨论,并把讨论后的结果进行交流。
发现1:四边形内角和是2个180的和,五边形内角和是3个180的和,六边形内角和是4个180的和,十边形内角和是8个180的和。发现2:多边形的边数增加1,内角和增加180。
发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。
得出结论:多边形内角和公式:(n-2)·180。
(三)实际应用,优势互补
1、口答:(1)七边形内角和()
(2)九边形内角和()
(3)十边形内角和()
2、抢答:(1)一个多边形的内角和等于1260,它是几边形?
(2)一个多边形的内角和是1440,且每个内角都相等,则每个内角的度数是()。
3、讨论回答:一个多边形的内角和比四边形的内角和多540,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?
(四)概括存储
学生自己归纳总结:
1、多边形内角和公式
2、运用转化思想解决数学问题
3、用数形结合的思想解决问题
(五)作业:练习册第93页1、2、3
初中八年级数学教学课件通用篇2
教学目标
掌握假分数化成带分数的方法,能正确地把假分数化成整数或带分数。
教学重难点
学习重点理解将假分数化成整数或带分数。
学习难点掌握假分数化成整数或带分数的方法。
教学工具
PPT课件
教学过程
一、复习引入。(6分钟)
1.判断下面各数哪些是真分数,哪些是假分数。
1/7 3/2 4/9 12/47
教师根据学生的分类,把假分数取出来,让学生观察。
2.观察以上假分数,根据分子能否被分母整除这一特征,假分数可以分为几类?根据学生的汇报板书。
3.揭示课题:这节课我们来一起学习把假分数化成整数或带分数。(板书课题:真分数和假分数(2))。
二、探究新知。15分钟)
教学例3。
1.把3/3 8/4化成整数。
(1)课件出示例3(1)的圆形图,提问:分别用分数怎样表示?
(2)讨论:如何把3/3、8/4化成整数?
2.把7/3 、6/5化成带分数。
(1)提问:7/3 、6/5的分子不是分母的倍数,这种情况怎样转化?
(2)交流讨论方法。
(3)学生在练习本上试着把化成带分数。
3.小结:把假分数化成整数或带分数的方法。
学案
1.根据真分数和假分数的意义进行分类,汇报交流。
2.交流假分数的分类情况。
3.明确本节课的学习内容。
1.(1)看课件,回答用3/3 、8/4表示。
(2)同桌讨论后交流:
①根据分数与除法的关系3/3 =3÷3=1,
②根据分数的意义是1,可以想3/3里面有3个1/3 。
2.(1)思考老师的提问。
(2)讨论后交流:
① 7/3是6/3和1/3合成的数,等于2 1/3 。
②也可以用7÷3=2……1,商2是带分数的整数部分,余数1是分数部分的分子,分母不变。
(3)学生独立练习,集体订正。
3.师生共同小结。
三、巩固练习。14分钟
1.完成教材第54页“做一做”第2题。
2.完成教材第55页第4,第56页第6题。
四、课堂总结。(5分钟)
1.通过本节课的学习,大家学习了假分数化成整数或带分数的方法,希望同学们学以致用,体会学习数学的乐趣。
2.布置课后学习内容。
课后小结
本节课的教学重点是让学生掌握假分数化成整数或带分数的方法。教学主要采用方法算理,概念结合,帮助学生掌握方法。假分数化成整数或带分数的方法,既可以由分数与除法的关系导出,又可以根据分数的意义来解释假分数化成整数或带分数的结果,结合直观图解释。教学时,先让学生探索交流,感受方法的多样性,在交流的过程中,学生优化各自的想法,教师做“画龙点睛”式的引导。
课后习题
1.写出下面的带分数。
八又七分之三
写作:_____________
十五又六分之一
写作:_____________
二十三又四分之三
写作:_____________
1.读出下面的带分数。
3 1/8读作:_____________
70 3/57读作:_____________
2 4/79读作:_____________
2.写出下面的带分数。
八又七分之三
写作:_____________
十五又六分之一
写作:_____________
二十三又四分之三
写作:_____________
答案:8 15 23
3.填一填。
(1)23÷9= ( )/( )
(2)6= 12/( ) =( )/3 = ( )/5 = 24/( )
(3)3 1/2读作( ),它的分数单位是( ),它有( )个这样的分数单位。
4.做同一种零件,张师傅2小时做17个,李师傅3小时做20个,谁做得快些?(化成带分数再比较)
答:张师傅做得快。
板书
假分数化成整数或带分数的方法:
用分子除以分母,
当分子是分母的倍数时,
能化成整数,商就是这个整数;
当分子不是分母的倍数时,能化成带分数,
商是带分数的整数部分,余数是分数部分的分子,分母不变。
初中八年级数学教学课件通用篇3
一、教学目标
(一)知识教学点
1、使学生能利用公式解决简单的实际问题。
2、使学生理解公式与代数式的关系。
(二)能力训练点
1、利用数学公式解决实际问题的能力。
2、利用已知的公式推导新公式的能力。
(三)德育渗透点
数学来源于生产实践,又反过来服务于生产实践。
(四)美育渗透点
数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美。
二、学法引导
1、数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点。
2、学生学法:观察→分析→推导→计算
三、重点、难点、疑点及解决办法
1、重点:利用旧公式推导出新的图形的计算公式。
2、难点:同重点。
3、疑点:把要求的图形如何分解成已经熟悉的图形的和或差。
四、课时安排
一课时。
五、教具学具准备
投影仪,自制胶片。
六、师生互动活动设计
教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式。
初中八年级数学教学课件通用篇4
教学目标:
(一)教学知识点
1.了解平方根的概念、开平方的概念。
2.明确算术平方根与平方根的区别与联系。
3.进一步明确平方与开方是互为逆运算。
(二)能力训练要求
1.加强概念形成过程的教学,让学生不仅掌握概念,而且知晓它的理论数据。
2.提倡学生进行自学,并能与同学互相交流与合作,变学会知识为会学知识。
3.培养学生的求同和求异思维,能从相似的事物中观察到共同点和不同点。
(三)情感与价值观要求
通过学生在学习中互相帮助、相互合作,并能对不同概念进行区分,培养大家的团队精神,以及认真仔细的学习态度,为学生将来走上社会而做准备,使他们能在工作中保持严谨的态度,正确处理好人际关系,成为各方面的佼佼者。
教学重点:
1.了解平方根、开平方的概念。
2.了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根。
3.了解平方根与算术平方根的区别与联系。
教学难点:
1.平方根与算术平方根的区别与联系。
2.负数没有平方根,即负数不能进行开平方运算的原因。
教学方法:
讨论比较法。
即主要靠大家讨论得出结论,同时对相似的概念进行比较。这样不仅能正确区分这些概念,还能使学生学得更扎实。
教学过程:
Ⅰ.创设问题情境,引入新课
上节课我们学习了算术平方根的概念,性质。知道若一个正数x的平方等于a,即x2=a.则x叫a的算术平方根,记作x=,而且也是非负数,比如正数22=4,则2叫4的算术平方根,4叫2的平方,但是(-2)2=4,则-2叫4的什么根呢?下面我们就来讨论这个问题。
Ⅱ.讲授新课
1.平方根、开平方的概念
[师]请大家先思考两个问题。
(1)9的算术平方根是3,也就是说,3的平方是9,还有其他的数,它的平方也是9吗?
(2)平方等于的数有几个?平方等于0.64的数呢?
[生]-3的平方也是9.
的平方是,-的平方也是,即平方等于的数有两个。
[生]平方等于9的数有两个,平方等于的数有两个,由此可知平方等于0.64的数也有两个。
[师]根据上一节课的内容,我们知道了是9的算术平方根,是的算术平方根,那么-3,-叫9、的什么根呢?请大家认真看书后回答。
[生]-3,-分别叫9、的平方根。
[师]那是不是说3叫9的算术平方根,-3也叫9的算术平方根,即9的算术平方根有一个是3,另一个是-3呢?
[生]不对。根据平方根的定义,一般地,如果一个数x的平方等于a,即x2=a,那么这个x就叫a的平方根(squareroot),也叫二次方根,3和-3的平方都等于9,由定义可知3和-3都是9的平方根,即9的平方根有两个3和-3,9的算术平方根只有一个是3.
[师]由平方根和算术平方根的定义,大家能否找出它们有什么相同和不同之处呢?请分小组讨论后选代表回答。
[生]平方根的定义中是有一个数x的平方等于a,则x叫a的平方根,x没有肯定是正数还是负数或零;而算术平方根的定义中是有一个正数x的平方等于a,则x叫a的算术平方根,这里的x只能是正数。由此看来都有x2=a,这是它们的相同之处,而x的要求不同,这是它们的不同之处。
[师]这位同学分析判断能力特棒,下面我再详细作一总结。
平方根与算术平方根的联系与区别
联系:(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种。
(2)存在条件相同:平方根和算术平方根都是只有非负数才有。(3)0的平方根,算术平方根都是0.
区别:
(1)定义不同:“如果一个数的平方等于a,这个数就叫做a的平方根”;“非负数a的非负平方根叫a的算术平方根”。
(2)个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个。
(3)表示法不同:正数a的平方根表示为±,正数a的算术平方根表示为。
(4)取值范围不同:正数的平方根一正一负,互为相反数;正数的算术平方根只有一个。
[师]什么叫开平方呢?
[生]求一个数a的平方根的运算,叫开平方(extractionofsquareroot),其中a叫被开方数。
[师]我们共学了几种运算呢,这几种运算之间有怎样的联系呢?请大家讨论后回答。
[生]我们共学了加、减、乘、除、乘方、开方六种运算。加与减互为逆运算,乘与除互为逆运算,乘方与开方互为逆运算。
2.平方根的性质
[师]请大家思考以下问题。
(1)一个正数有几个平方根。
(2)0有几个平方根?
(3)负数呢?
[生]第一个问题在前面已作过讨论,一个正数9有两个平方根3和-3;
因为只有零的平方为零,所以0有一个平方根是零。
因为任何数的平方都不是负数,所以负数没有平方根,例如-3没有平方根。
[师]太精彩了。一个正数有两个平方根,且它们互为相反数;0有一个平方根是0,负数没有平方根。
3.讲解例题
[例]求下列各数的平方根。
(1)64;(2);(3)0.0004;(4)(-25)2;(5)11.
4.想一想
(1)()2等于多少?()2等于多少?
(2)()2等于多少?
(3)对于正数a,()2等于多少?
Ⅲ.课堂练习
(一)随堂练习
1.求下列各数的平方根
1.44,0,8,,441,196,10-4
2.填空
(1)25的平方根是_________;
(2)=_________;
(3)()2=_________.
(二)补充练习1.判断下列各数是否有平方根?并说明理由。
(1)(-3)2;(2)0;(3)-0.01;(4)-52;(5)-a2;(6)a2-2a+2
2.求下列各数的平方根。
(1)121;(2)0.01;(3)2;(4)(-13)2;(5)-(-4)3
Ⅳ.课时小结
本节课学了如下内容。
1.平方根的概念。
2.平方根的性质。
3.平方根与算术平方根的区别与联系。
4.求某些非负数的算术平方根和平方根。
Ⅴ.课后作业
习题2.4.
Ⅵ.活动与探究
1.对于任意数a,一定等于a吗?
2.中的被开方数a在什么情况下有意义,()2等于什么?
解:因为任意数的平方都是非负数,也就是非负数才有平方根,所以被开方数a必须是正数或零,即非负数时有意义。
所以()2=a(a≥0)
推荐访问:八年级 教学课件 初中 初中八年级数学教学课件通用版下载 初中八年级数学教学课件通用版下册 八年级数学课件ppt 初二数学教学课件 八年级数学ppt课件下载 初中八年级上册数学课件 初中八年级数学教学视频 初中数学八年级教学视频免费 八年级数学讲课视频 初二数学课件