当前位置:舍宁秘书网 > 专题范文 > 公文范文 > 2023年三年级下册知识点归纳总结数学8篇【精选推荐】

2023年三年级下册知识点归纳总结数学8篇【精选推荐】

时间:2024-05-30 09:15:01 来源:网友投稿

三年级下册知识点归纳总结数学第1篇第一单元位置与方向1、①(东与西)相对,(南与北)相对,(东南—西北)相对,(西南—东北)相对。②清楚以谁为标准来判断位置。③理解位置是相对的,不是绝对的。2、地图通下面是小编为大家整理的三年级下册知识点归纳总结数学8篇,供大家参考。

三年级下册知识点归纳总结数学8篇

三年级下册知识点归纳总结数学 第1篇

第一单元 位置与方向

1、① (东与西)相对,(南与北)相对,(东南—西北)相对,(西南—东北)相对。② 清楚以谁为标准来判断位置。③ 理解位置是相对的,不是绝对的。

2、地图通常是按(上北、下南、左西、右东)来绘制的。( 做题时先标出北南西东。)

3、会看简单的路线图,会描述行走路线。一定写清楚从哪儿向哪个方向走,走了多少米,到哪儿再向哪个方向走。同一个地点可以有不同的描述位置的方式。同一个地点有不同的行走路线。一般找比较近的路线走。

4、指南针是用来指示方向的,它的一个指针永远指向(南方),另一端永远指向(北方)。

5、生活中的方位知识:① 北极星永远在北方。② 影子与太阳的方向相对。③ 早上太阳在东方,中午在南方,傍晚在西方。④ 风向与物体倾斜的方向相反。

第二单元 除数是一位数的除法

1、口算时要注意:(1)0除以任何数(0除外)都等于0;(2)0乘以任何数都得0;(3)0加任何数都得任何数本身;(4)任何数减0都得任何数本身 。

2、没有余数的除法:
被除数÷除数=商,商×除数=被除数,被除数÷商=除数

有余数的除法:被除数÷除数=商……余数,商×除数+余数=被除数,(被除数—余数)÷商=除数

3、笔算除法顺序:确定商的位数,试商,检查,验算。

4、基本规律:(1)从高位除起,除到哪一位,就把商写在那一位;(2)三位数除以一位数时百位上够除,商就是三位数;百位上不够除,商就是两位数;(最高位不够除,就看两位上商。)(3)哪一位有余数,就和后面一位上的数合起来再除;(4)哪一位上不够商1,就添0占位;每一次除得的余数一定要比除数小。

5、课外知识拓展:2、3、5倍数的特点2的倍数:个位上是2、4、6、8、0的数是2的倍数。5的倍数:个位上是0或5的数是5的倍数。3的倍数:各个数位上的数字加起来的和是3的倍数,这个数就是3的倍数。

6、关于倍数问题:两数和÷倍数和=1倍的数,两数差÷倍数差=1倍的数

7、和差问题(两数和-两数差)÷2=较小的.数,(两数和 + 两数差)÷2=较大的数

第三单元 复式统计表

1、把两个或两个以上有联系的单式统计表合编成一个统计表,这个统计表就是复式统计表。

2、观察、分析复式统计表要先看表头,弄清每一项的内容,再根据数据进行分析,回答问题。

第四单元 两位数乘以两位数

口算乘法

1、两位数乘一位数的口算方法:(1)把两位数分成整十数和一位数,用整十数和一位数分别与一位数相乘,最后把两次乘得的积相加(2)在脑中列竖式计算。

2、整百整十数乘一位数的口算方法:(1)先用整百数乘一位数,再用整十数乘一位数,最后把两次乘得的积相加。(2)先用整百整十数的前两位与一位数相乘,再在乘积的末尾添上一个0。(3)在脑中列竖式计算。

3、一个数与10相乘的口算方法:一位数与10相乘,就是把这个数的末尾添上一个0。

4、两位数乘整十数的口算方法:先用这个两位数与整十数十位上的数相乘,然后在积的末尾添上一个O。

笔算乘法

1、先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘(积与十位对齐),最后把两个积加起来。

2、凡是问“够不够,能不能”等的题,都要三大步:①计算、②比较、③答题。→ 别忘了比较这一步。

3、相关公式:因数×因数 = 积,积÷因数 = 另一个因数。

4、两位数乘两位数积可能是( 三 )位数,也可能是( 四 )位数。

第五单元 面积

面积和面积单位:

1、常用的面积单位有:(平方厘米)、(平方分米)、(平方米)。

2、理解面积的意义和面积单位的意义。

面积:物体表面或封闭图形的大小,叫做它们的面积。边长是1米的正方形,它的面积是1平方米。边长是1分米的正方形,它的面积是1平方分米。边长是1厘米的正方形,它的面积是1平方厘米。

3、区分长度单位和面积单位的不同。长度单位测量线段的长短,面积单位测量面的大小。

4、正确理解并熟记相邻的面积单位之间的进率。① 进率100:1平方米 = 100平方分米,1平方分米 = 100平方厘米② 相邻两个常用的长度单位之间的进率是( 10 )。相邻两个常用的面积单位之间的进率是( 100 )。

背熟公式1、周长公式:长方形的周长 = (长+宽)× 2,长 = 周长÷2-宽,或者:(周长-长×2)÷2= 宽,宽 = 周长÷2-长,或者:(周长-宽×2)÷2=长 ;正方形的周长 = 边长×4,正方形的边长 = 周长÷4

5、面积公式:长方形面积=长×宽,正方形的面积=边长×边长,长方形周长=(长+宽)×2,正方形周长=边长×4,已知面积求长:长=面积÷宽,已知面积求边长:边长=面积开平方,已知周长求长:长=周长÷2 - 宽。

第六单元 年、月、日

年、月、日

1、常用的时间单位有:(年、月、日)和(时、分、秒)。

2、熟记每个月的天数:知道大月一个月有31天,小月一个月有30天。平年二月28天,闰年二月29天,二月既不是大月也不是小月。一年有12个月(7大4小1特殊)

3、熟记全年天数:平年2月28天,闰年2月29天。平年365天,闰年366天。上半年多少天(平年181天,闰年182天),下半年多少天(所有年份都是184天)。

4、经过的天数的计算:公式:结束时间—开始时间 + 1

5、给出一个人出生的年份,会计算这个人多少周岁;给出一个人的年龄会计算他是哪一年出生的。

6、通常每4年里有( 1 )个闰年, ( 3 )个平年。

24计时法

1、普通计时法又叫12时计时法,就是把一天分成两个12时表示,普通计时法一定要加上“上午”、“下午”等前缀。(如凌晨3时、早上8时、上午10时、下午2时、晚上8时)

2、24时计时法:就是把一天分成24时表示,不加前缀

3、普通计时法转换成24时计时法时,超过下午1时的时刻用24时计时法表示就是把原来的时刻加上12,去掉前缀。

4、反过来要把24时计时法表示的时刻表示成普通计时法的时刻,超过13时的时刻就减12,并加上下午,晚上等字在时刻前面。

5、计算经过时间,就是用结束时刻减开始时刻。结束时刻-开始时刻=时间段(经过时间)★(计算经过时间时,一定把不同的计时法变成相同的计时法再计算)

6、认识时间与时刻的区别:(时间是一段,时刻是一个点)

7、时间单位进率:1世纪=100年,1年 =12个月,1天(日)=24小时,1小时=60分钟,1分钟=60秒钟,1周=7天

第七单元 小数的初步认识

1、小数的意义:像,,,,和这样的数叫做小数。小数是分数的另一种表现形式。

2、小数的认、读、写:限于小数部分不超过两位的小数。整数部分按整数的读法(几百几十几)。小数部分每一位都要读,按读电话号码的方法读,有几个0就读几个零。

3、小数与分数的关系、互换。小数不同表示的分数就不同。

4、把“单位1”平均分成10份,每份是它的十分之一,也就是,把“单位1”平均分成100份,每份是它的百分之一,也就是。

5、分母是10的分数写成一位小数(),分母是100的分数写成两位小数()。

6、比较两个小数的大小:先比较小数的整数部分,整数部分大的数就大,如果整数部分相同就比较小数的小数部分,小数部分要从小数点后最高位比起。

7、比大小的两种情况:跑步是数越少越好;跳远、跳高是数越大越好。

8、计算小数加、减法时,小数点对齐,也就是相同数位对齐,再相加、减。

9、小数不一定比整数小。(如:
>5 ; > 1等)

第八单元 数学广角-搭配(二)

简单的排列:有序排列才能做到不重复、不遗漏。

简单的组合:组合问题可以用连线的方法来解决。

组合与排列的区别:排列与事物的顺序有关,而组合与事物的顺序无关。

三年级下册知识点归纳总结数学 第2篇

(一)年、月、日部分

1、一年有12个月;一年有4个季度(1、2、3月为第1季度;4、5、6月为第2季度,;7、8、9月为第3季度;10、11、12月为第4季度)。

2、记大小月的方法:1、3、5、7、8、10、腊,31天永不差;4、6、9、冬,30整,只有2月二七九。7个大月,4个小月,二月平年28天,闰年29天。

3、平年全年有365天,平年2月是28天,平年的上半年有181天,下半年有184天。平年全年有52个星期零1天。

4、闰年全年有366天,闰年2月是29天,闰年的上半年有182天,下半年有184天。闰年全年有52个星期零2天。

5、公历年份是4的倍数的一般都是闰年;但公历年份是整百数的,必须是400的倍数才是闰年。如:1900、2100等不是闰年,而1600、2000、2400等是闰年。

6、连续两个月共62天的是:7月和8月,12月和第二年的1月;

一年中连续两个月共62天的是:7月和8月。

7、一个人今年20岁,但只过了5个生日,他是2月29日出生的。

8、计算周年的方法是用现在的年份减去原来的年份得的数就是周年。如:到2008年10月1日,是中国成立(59)周年。用2008-1949=59周年

(二)24时计时法部分

1、年月日、时分秒都是时间单位。

2、在一日里,钟表上时针正好走两圈,共24小时。所以,经常采用从0时到24时的计时法,通常叫做24时计时法。

3、1日(天)=24小时;1小时=60分;1分=60秒

4、求经过的时间。如:一辆汽车上午8:20出发,到下午5:50到达终点,一共行使多长时间。第一步要先进行换算:把下午5:50变成24时计时法的形式5:50+12=17:50,第二步用17时50分-8时20分=9时30分,就求出了经过的时间。

5、认识时间与时刻的区别。

如:火车11:00出发,21:30到达,火车运行时间是10小时30分,注意不要写成10:30。正确的列式格式为:21时30分-11时=10时30分,不能用电子表的形式相减。

再如:火车19时出发,第二天8时到达,火车运行时间是13小时。像这种跨越两天的,可以先计算第一天行驶了多长时间:24-19=5(时),再加上第二天行驶的8个小时:5+8=13(时)。

又如:一场球赛,从19时30分开始,进行了155分钟,比赛什么时候结束?先换算,155分=2时35分,再计算。

6、经过的天数的计算:

公式:结束时间—开始时间+1=经过的天数

例如:6月12到6月30日是多少天?(30-12+1=19天)

数学学习方法

主动预习

新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。因此,培养自学能力,在老师的引导下学会看书,带着老师精心设计的思考题去预习。

如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。

抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。

思考是数学学习方法的核心

一些孩子对公式、性质、法则等背的挺熟,但遇到实际问题时,却又无从下手,不知如何应用所学的知识去解答问题。

如有这样一道题让学生解“把一个长方体的高去掉2厘米后成为一个正方体,他的表面积减少了48平方厘米,这个正方体的体积是多少?”

孩子对求体积的公式虽记得很熟,但由于该题涉及知识面广,许多同学理不出解题思路,这需要学生在老师家长的引导下逐渐掌握解题时的思考方法。

数学求倒数地方法

①求分数的倒数:交换分子、分母的位置。

②求整数的倒数:整数分之1。

③求带分数的倒数:先化成假分数,再求倒数。

④求小数的倒数:先化成分数再求倒数。

三年级下册知识点归纳总结数学 第3篇

位置:所在或所占的地方。

方向:指东,西,南,北等方位。

除法:已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。

若ab=c(b≠0),用积数c和因数b来求另一个因数a的运算就是除法,写作c/b,读作c除以b(或b除c)。

其中,c叫做被除数,b叫做除数,运算的结果a叫做商。

除法法则:除数是几位,先看被除数的前几位,前几位不够除,多看一位,除到哪位,商就写在哪位上面,不够商一,0占位。

余数要比除数小,如果商是小数,商的小数点要和被除数的小数点对齐;如果除数是小数,要化成除数是整数的除法再计算。

商不变性质:被除数和除数同时乘或除以一个非零自然数,商不变。

除法的性质:一个数连续除以几个数,等于这个数除以那几个数的乘积,就是除法的性质。有时可以根据除法的性质来进行简便运算。如:300÷25÷4=300÷(25×4)。

被除数、除数、商的关系:被除数扩大(缩小)n倍,商也相应的扩大(缩小)n倍;除数扩大(缩小)n倍,商相应的缩小(扩大)n倍)。

笔算除法:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。

除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。

没有括号的混合运算:同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。

第一级运算:加法和减法叫做第一级运算。

第二级运算:乘法和除法叫做第二级运算。

数据:数据也称观测值,是实验、测量、观察、调查等的结果,常以数量的形式给出。

数据分析:数据分析是组织有目的地收集数据、分析数据,使之成为信息的过程。

数据分析的步骤和应用:数据分析有极广泛的应用范围。典型的数据分析可能包含以下三个步:

(1)探索性数据分析,当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。

(2)模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。

(3)推断分析,通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。

平均数:指在一组数据中所有数据之和再除以数据的个数。平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标。

解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数。

在统计工作中,平均数(均值)和标准差是描述数据资料集中趋势和离散程度的两个最重要的测度值。

二十四时计时法

(1)分段计时法(十二时计时法):深夜12时是一日的"开始,1天的24小时又分为两段,每段12小时。从深夜12时起到中午12时叫做上午,再从中午12时起到深夜12时叫做下午。生活中通常采用这种计时法。

(2)二十四时计时法:这是是广播电台、车站、邮电局等部门采用的0到24时计时法,按照这种计时法,下午1时就是13:00,下午2时就是14:00……夜里12时就是24:00,又是第二天的0:

乘法算式中各数的名称:“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。

例:10(因数)×(乘号)200(因数)=(等于号)20XX(积)

乘法的运算定律:

整数的乘法运算满足:交换律,结合律,分配律,消去律。

随着数学的发展,运算的对象从整数发展为更一般群。

群中的乘法运算不再要求交换律。最有名的非交换例子,就是哈密尔顿发现的四元数群。但是结合律仍然满足。

(1)乘法交换律:a×b=b×a

(2)乘法结合律:(a×b)×c=a×(b×c)

(3)乘法分配律:(a+b)×c=a×c+b×c

面积:物体的表面—平面图形的大小,叫做它们的面积。

常用的面积单位有平方厘米、平方分米和平方米。

(1)边长是1厘米的正方形,面积是1平方厘米。

(2)边长是1分米的正方形,面积是1平方分米。

(3)边长是1米的正方形,面积是1平方米。

一般测量较大的面积用到公顷和平方千米。

(1)边长是100米的正方形,面积是1公顷。

(2)边长是1千米的正方形,面积是1平方千米。

面积计算方法:

长方形:S=ab{长方形面积=长×宽}

正方形:S=a2{正方形面积=边长×边长}

平行四边形:S=ab{平行四边形面积=底×高}

三角形:S=ab÷2{三角形面积=底×高÷2}

梯形:S=(a+b)×h÷2{梯形面积=(上底+下底)×高÷2}

圆形(正圆):S=πr2{圆形(正圆)面积=圆周率×半径×半径}

面积计量单位及进率:

1平方千米(k㎡)=100公顷(ha)1平方千米=1000000平方米(㎡)

1公顷=10000平方米1平方米=100平方分米(d㎡)

1平方分米=100平方厘米(c㎡)。

公顷:公顷的单位符号用“h㎡”表示,其中h表示百米,h㎡的含义就是百米的平方,也就是10000平方米,即1公顷。

小数:小数由整数部分、小数部分和小数点组成。

当测量物体时往往会得到的不是整数的数,古人就发明了小数来补充整数小数是十进制分数的一种特殊表现形式。

分母是10、100、1000……的分数可以用小数表示。所有分数都可以表示成小数,小数中除无限不循环小数外都可以表示成分数。

小数的基本性质:小数末尾添上0或去掉0,小数的大小不变,但计数单位变了。

而且,小数点向左移动一位、两位、三位,原来的数就缩小10倍、100倍、1000倍,小数点向右移动一位、两位、三位,原来的数就扩大10倍、100倍、1000倍。

小数写法:整数部分写在小数点前,小数部分写在小数点后,中间用小数点隔开。

小数的读法:

(1)按照分数的读法来读.带小数的整数部分按整数读法读;小数部分按分数读法读。

例:读作百分之三十八,读作十四又百分之五十六。

(2)整数部分仍按整数的读法来读,小数点读作“点”,小数部分顺次读出每个数位上的数字,若几个零重复,不可只读一个

例:读作零点四五;读作五十六点零三二;读作一点零零零五。

三年级下册知识点归纳总结数学 第4篇

知识要点位置与方向

(一)认识东、南、西、北

1、自己动手制作一个“方向盘”,即在一张纸上,画上“十”字,按上北下南、左西右东标好

(西—+—东);

2、小学生三年级下册数学知识要点位置与方向:面朝南时,转动方向盘,将南对准前面,即:东—+—西,面朝东时,方向盘定为:北—+—南。

(二)认识东南、东北、西南、西北

(三)确定中心,找方位——解决这类题目的关键是找准以谁为中心。

三年级下册知识点归纳总结数学 第5篇

1、物体的表面或封闭图形的大小,就是他们的面积。

2、比较两个图形面积的大小,要用统一的面积单位来测量。

3、常用的面积单位有平方厘米(cm2),平方分米(dm2)、平方米(m2)。

4、边长1厘米的正方形面积是1平方厘米。

5、边长1分米的正方形面积是1平方分米。

6、边长1米的正方形面积是1平方米。

7、边长100米的正方形面积是1公顷(10000平方米)。

8、边长1千米(1000米)的正方形面积是1平方千米。

9、测量土地的面积时,常常要用到更大的面积单位:公顷、平方千米。

10、长方形的面积=长×宽长=面积÷宽宽=面积÷长

11、正方形的面积=边长×边长

12、长方形的周长=(长+宽)×2宽=周长÷2-长长=周长÷2-宽

13、正方形的周长=边长×4

14、正方形的边长=周长÷4

15、相邻的两个常用的长度单位间的进率是10。

16、相邻的两个常用的面积单位间的进率是100。

17、1平方米=100平方分米;1平方分米=100平方厘米;

1公顷=10000平方米;1平方千米=100公顷(公顷、平方千米这两个土地面积单位间的进率是100。)

小学数学学习方法

重视计算

数学的计算学习就像语文的识字学习,是最基本的。

不识字,语文读不好;计算差,数学同样学不好。而且计算好,会给孩子数学学习提供很大的帮助。

可以每天让做2分钟口算。一开始,2分钟内能只能做完20道口算,但之后,你会发现会越来越快,正确率越来越高。

重视生活中的数学

其实数学的学习对生活的影响很大,它能提供很多的帮助。

例如:

买东西、计算利率、盈利等等,这些都用到数学。你可以在生活中,有意识的跟孩子提数学问题,让他解答。很简单,你带孩子去买菜,一斤苹果5元,买3斤多少钱,给阿姨20元,找回多少钱。

别小看这些,在小学数学学习中,解决问题占的分数是最多的,而解决问题无非就是判断用加减乘除中的哪种来列式解答,这些问题其实就是生活中的问题,孩子在生活中接触多,自然就会解答。

小学数学考点

数与计算

(1)分数的乘法和除法,分数乘法的意义,分数乘法,乘法的运算定律推广到分数,倒数,分数除法的意义,分数除法。

(2)分数四则混合运算,分数四则混合运算。

(3)百分数,百分数的意义和写法,百分数和分数、小数的互化。

比和比例

比的意义和性质,比例的意义和基本性质,解比例,成正比例的`量和成反比例的量。

几何初步知识

圆的认识,圆周率,画圆,圆的周长和面积,扇形的认识,轴对称图形的初步认识,圆柱的认识,圆柱的表面积和体积,圆锥的认识,圆锥的体积,球和球的半径、直径的初步认识。

三年级下册知识点归纳总结数学 第6篇

第一章分式

1、分式及其基本性质

分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

2、分式的运算

(1)分式的乘除

乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母

除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减

加减法法则:同分母分式相加减,分母不变,把分子相加减;

异分母分式相加减,先通分,变为同分母的分式,再加减

3、整数指数幂的加减乘除法

4、分式方程及其解法

第二章反比例函数

1、反比例函数的表达式、图像、性质

图像:双曲线

表达式:y=k/x(k不为0)

性质:两支的增减性相同;

2、反比例函数在实际问题中的应用

第三章勾股定理

1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方

2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

第四章四边形

1、平行四边形

性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;

两组对角分别相等的四边形是平行四边形;

对角线互相平分的四边形是平行四边形;

一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2、特殊的平行四边形:矩形、菱形、正方形

(1)矩形

性质:矩形的四个角都是直角;

矩形的对角线相等;

矩形具有平行四边形的所有性质

判定:有一个角是直角的平行四边形是矩形;

对角线相等的平行四边形是矩形;

推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形

性质:菱形的四条边都相等;

菱形的对角线互相垂直,并且每一条对角线平分一组对角;

菱形具有平行四边形的一切性质

判定:有一组邻边相等的平行四边形是菱形;

对角线互相垂直的平行四边形是菱形;

四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3、梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底边上的两个角相等;

等腰梯形的两条对角线相等;

同一个底上的两个角相等的梯形是等腰梯形。

第五章数据的分析

加权平均数、中位数、众数、极差、方差

三年级下册数学学习方法

回顾和把握平时的困难,注意检查错误,填补空白,合理解决问题。

在实践中,我们要抓住一个难题。我省高考数学考试的难度在0.65左右,如果命题的方向不偏颇,大多数学生都能减少当前问题的难度。对于优等生,要提高难度,灵活运用知识,深入分析问题,提高解决问题的能力。在平时,练习的次数应该适度控制,以前做过的问题应该被发现,特别是容易出错的知识点。我们应该再看一遍,把概念搞清楚,这样才能减少类似问题再犯错误的可能性。有两个重要的问题,一个是战略,另一个是技能。高考就像战争一样,在战略上要轻视敌人,在战术上要重视敌人。在策略上,学生应该建立信心。毕竟复习时间已经够长了,应该掌握知识,这样答案才能立于不败之地。就技巧而言,回答问题比回答问题容易。在试卷中,难度一般是分散的:选择题的难度在后面,填空的难度也是一样的。大问题一般可以在前面或两个做,在后面的大问题中,一两个小问题是比较容易解决的。当你回答一个问题时,你必须先解决这些问题。当你遇到麻烦时,不要花太多时间。只要放弃,做一些简单的事情,专注于突破。考试时间比较紧,要分配合理的答题时间。当然,这会因人而异。中产阶层应该把重心往前移动,在前面选择,填的时间越多,问题越大,有的由前面的问题比较简单,就能拿到积分来把握。优等生要在掌握问题速度的前提下,在适当的重心转移的前提下解决问题。

三年级下册数学学习技巧

学会看题

高中比初中有更多的相关材料。高考是全社会关注的问题。因此,在高中的实践尤其多,一些学生购买更多的材料。因此,如何利用主题来掌握我们学习的知识,扩大我们所学的知识是学习的关键。我认为我们应该看更多的话题,更多的思考,看看解决材料中问题的方法,思考方法中的原因,这样我们就可以从更多的方法中学习。

有很多方法来消化它们。因此,我们将不得不选择去做这个问题,用一半的努力达到两倍的结果。我建议每天练习一次,每周做一组完整的试题,看2到3组试题,从中找出这段时间数学学习的关键知识,这些是我们常用来解决问题的方法,以及可以用来优化解题的方法。

课后巩固

很多学生在课后的学习过程中不注重巩固,只是觉得课堂上的一些知识就足够了,其实这是错误的。高中数学知识丰富,不像初中数学那么简单,却有着丰富的内涵。如果它不能进一步挖掘,那么它只是掌握这些知识的表面。因此,我不知道如何理解,也不能使用这些知识时,我做我的练习。

做练习是必要的,但有些学生只是做练习,而不是巩固这些知识,把知识扩展到做练习,经常是在练习完成后完成练习。这和中学问题没有什么区别。事实上,我们也应该把在这个练习中使用的知识联系起来,这样我们才能理解正在使用的知识,并且能够掌握更多的知识。也可以发现知识点是关键,也可以发现如何链接相关知识的难题。

三年级下册知识点归纳总结数学 第7篇

一、 重要概念

分类:

1.代数式与有理式

用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

整式和分式统称为有理式。

2.整式和分式

含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3.单项式与多项式

没有加减运算的整式叫做单项式。(数字与字母的积包括单独的一个数或字母)

几个单项式的和,叫做多项式。

说明:

①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。

②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,

=x, =│x│等。

4.系数与指数

区别与联系:①从位置上看;②从表示的意义上看

5.同类项及其合并

条件:①字母相同;②相同字母的指数相同

合并依据:乘法分配律

6.根式

表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

注意:①从外形上判断;②区别:
、 是根式,但不是无理式(是无理数)。

7.算术平方根

⑴正数a的正的平方根( [a与平方根的区别]);

⑵算术平方根与绝对值

① 联系:都是非负数, =│a│

②区别:│a│中,a为一切实数; 中,a为非负数。

8.同类二次根式、最简二次根式、分母有理化

化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

把分母中的根号划去叫做分母有理化。

9.指数

⑴ ( 幂,乘方运算)

① a0时, ②a0时, 0(n是偶数), 0(n是奇数)

⑵零指数:
=1(a0)

负整指数:
=1/ (a0,p是正整数)

三年级下册知识点归纳总结数学 第8篇

复式统计表

1、把两个或两个以上有联系的单式统计表合编成一个统计表,这个统计表就是复式统计表。

2、观察、分析复式统计表要先看表头,弄清每一项的内容,再根据数据进行分析,回答问题。

两位数乘以两位数

口算乘法

1、两位数乘一位数的口算方法:

(1)把两位数分成整十数和一位数,用整十数和一位数分别与一位数相乘,最后把两次乘得的积相加

(2)在脑中列竖式计算。

2、整百整十数乘一位数的口算方法:

(1)先用整百数乘一位数,再用整十数乘一位数,最后把两次乘得的积相加。

(2)先用整百整十数的前两位与一位数相乘,再在乘积的末尾添上一个0。

(3)在脑中列竖式计算。

3、一个数与10相乘的口算方法:

一位数与10相乘,就是把这个数的末尾添上一个0。

4、两位数乘整十数的口算方法:

先用这个两位数与整十数十位上的数相乘,然后在积的末尾添上一个O。

小技巧:口算乘法:整十、整百的数相乘,只需把0前面的数字相乘,再看两个因数一共有几个0,就在结果后面添上几个0。

如:30×500=15000可以这样想,3×5=15,两个因数一共有3个0,在所得结果15后面添上3个0就得到30×500=15000

笔算乘法

先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘(积与十位对齐),最后把两个积加起来。

注意事项

估算:18×22,可以先把因数看成整十、整百的数,再去计算。

→(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。)

2、有大约字样的一般要估算。

3、凡是问够不够,能不能等的题,都要三大步:

①计算、②比较、③答题。→别忘了比较这一步。

几个特殊数:

25×4=100,125×8=1000

4、相关公式:

因数×因数=积

积÷因数=另一个因数

推荐访问:知识点 下册 归纳 三年级下册知识点归纳总结数学8篇 三年级下册知识点归纳总结数学(推荐8篇) 三年级下册知识点汇总数学

猜你喜欢