当前位置:舍宁秘书网 > 专题范文 > 公文范文 > 2023年五年级下册数学数学知识点12篇(2023年)

2023年五年级下册数学数学知识点12篇(2023年)

时间:2024-05-29 10:45:01 来源:网友投稿

五年级下册数学数学知识点第1篇第四单元分数的意义和性质1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。2、单位“1”:一个整体可以用下面是小编为大家整理的五年级下册数学数学知识点12篇,供大家参考。

五年级下册数学数学知识点12篇

五年级下册数学数学知识点 第1篇

第四单元 分数的意义和性质

1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。

2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。(也就是把什么平均分什么就是单位“1”。)

3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。如4/5的分数单位是1/5。

4、分数与除法

A÷B=A/B(B≠0,除数不能为0,分母也不能够为0) 例如:4÷5=4/5

5、真分数和假分数、带分数

1、真分数:分子比分母小的分数叫真分数。真分数<1。

2、假分数:分子比分母大或分子和分母相等的分数叫假分数。假分数≧1

3、带分数:带分数由整数和真分数组成的分数。带分数>

4、真分数<1≤假分数

真分数<1<带分数

6、假分数与整数、带分数的互化

(1)假分数化为整数或带分数,用分子÷分母,商作为整数,余数作为分子, 如:

(2)整数化为假分数,用整数乘以分母得分子 如:

(3)带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变,如:

(4)1等于任何分子和分母相同的分数。如:

7、分数的基本性质:

分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

8、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。

一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。反之则不可以。

9、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

如:24/30=4/5

10、通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。

如:2/5和1/4 可以化成8/20和5/20

11、分数和小数的互化

(1)小数化为分数:数小数位数。一位小数,分母是10;两位小数,分母是100……

如:

(2)分数化为小数:

方法一:把分数化为分母是10、100、1000……

如:

方法二:用分子÷分母

如:3/4=3÷

(3)带分数化为小数:

先把整数后的分数化为小数,再加上整数

12、比分数的大小:

分母相同,分子大,分数就大;

分子相同,分母小,分数才大。

分数比较大小的一般方法:同分子比较;通分后比较;化成小数比较。

13、分数化简包括两步:一是约分;二是把假分数化成整数或带分数。

14、两个数互质的特殊判断方法:

① 1和任何大于1的自然数互质。

② 2和任何奇数都是互质数。

③ 相邻的两个自然数是互质数。

④ 相邻的两个奇数互质。

⑤ 不相同的两个质数互质。

⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。

15、求最大公因数的方法:

① 倍数关系:最大公因数就是较小数。

② 互质关系:最大公因数就是1

③ 一般关系:从大到小看较小数的因数是否是较大数的因数。

16、分数知识图解

五年级下册数学数学知识点 第2篇

第三单元 长方体和正方体

1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

长方体特点:

(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

正方体特点:

(1)正方体有12条棱,它们的长度都相等。

(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。

(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

3、长方体、正方体有关棱长计算公式:

长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4

L=(a+b+h)×4

长=棱长总和÷4-宽 -高

a=L÷4-b-h

宽=棱长总和÷4-长 -高

b=L÷4-a-h

高=棱长总和÷4-长 -宽

h=L÷4-a-b

正方体的棱长总和=棱长×12

L=a×12

正方体的棱长=棱长总和÷12

a=L÷12

4、长方体或正方体6个面和总面积叫做它的表面积。

长方体的表面积=(长×宽+长×高+宽×高)×2

S=2(ab+ah+bh)

无底(或无盖)

长方体表面积= 长×宽+(长×高+宽×高)×2

S=2(ab+ah+bh)-ab

S=2(ah+bh)+ab

无底又无盖长方体表面积=(长×高+宽×高)×2

S=2(ah+bh)

贴墙纸

正方体的表面积=棱长×棱长×6 S=a×a×6 用字母表示:S= 6a2

生活实际:

油箱、罐头盒等都是6个面

游泳池、鱼缸等都只有5个面

水管、烟囱等都只有4个面。

注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)

注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。

(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。

5、物体所占空间的大小叫做物体的体积。

长方体的体积=长×宽×高 V=abh

长=体积÷宽÷高 a=V÷b÷h

宽=体积÷长÷高 b=V÷a÷h

高=体积÷长÷宽 h= V÷a÷b

正方体的体积=棱长×棱长×棱长

V=a×a×a =a3

读作“a的立方”表示3个a相乘,(即a·a·a)

长方体或正方体底面的面积叫做底面积。

长方体(或正方体)的体积=底面积×高

用字母表示:V=S h(横截面积相当于底面积,长相当于高)。

注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。

6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。

固体一般就用体积单位,计量液体的体积,如水、油等。

常用的容积单位有升和毫升也可以写成L和ml。

1升=1立方分米

1毫升=1立方厘米

1升=1000毫升

(1L=1dm3 1ml=1cm3)

长方体或正方体容器容积的计算方法,跟体积的计算方法相同。

但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)

注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。

(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。

形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。

排水法的公式:

V物体 =V现在-V原来

也可以 V物体 =S×(h现在- h原来)

V物体 =S×h升高

8、【体积单位换算】

大单位× 进率=小单位

小单位÷进率=大单位

进率:1立方米=1000立方分米=1000000立方厘米(立方相邻单位进率1000)

1立方分米=1000立方厘米=1升=1000毫升

1立方厘米=1毫升

1平方米=100平方分米=10000平方厘米

1平方千米=100公顷=1000000平方米

注意:长方体与正方体关系

把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。

重量单位进率,时间单位进率,长度单位进率

大单位× 进率=小单位

小单位÷进率=大单位

长度单位:

1千米 =1000 米 1 分米=10 厘米

1厘米=10毫米 1分米=100毫米

1米=10分米=100厘米=1000毫米

(相邻单位进率10)

面积单位:

1平方千米=100公顷

1平方米=100平方分米

1平方分米=100平方厘米

1公顷=10000平方米(平方相邻单位进率100)

质量单位:

1吨=1000千克

1千克=1000克

人民币:

1元=10角 1角=10分 1元=100分

五年级下册数学数学知识点 第3篇

用天平找次品规律:

1、把所有物品尽可能平均地分成3份,(如余1则放入到最后一份中;如余2则分别放入到前两份中),保证找出次品而且称的次数一定最少。

2、数目与测试的次数的关系:

2~3个物体,保证能找出次品需要测的次数是1次

4~9个物体,保证能找出次品需要测的次数是2次

10~27个物体,保证能找出次品需要测的次数是3次

28~81个物体,保证能找出次品需要测的次数是4次

82~243个物体,保证能找出次品需要测的次数是5次

244~729个物体,保证能找出次品需要测的次数是6次

五年级下册数学数学知识点 第4篇

约分

把一个分数的分子、分母同时除以公因数,分数的值不变,这个过程叫做约分。

理解最简分数的含义:

像 这样分子、分母公因数只有1了,不能再约分了,这样的分数是最简分数。

分子与分母是相邻的自然数的分数一定是最简分数;分子分母是两个不同质数的分数一定是最简分数;分子是“1”的分数一定是最简分数。

掌握约分的方法:

约分的方法一般有两种,一种是用两个数的公因数一个一个去除,另一种是直接用两个数的公因数去除。

补充知识点:

比较分数大小时,分母相同的、分子相同的可以直接比较,有些时候分子分母都不相同可以采用约分后进行比较的方法。例如:

找最小公倍数

两个数公有的倍数叫做这两个数的公倍数,其中最小的一个,叫做最小公倍数。

找两个数的公倍数和最小公倍数的方法:

1、先找出两个数各自的倍数(限制一定的范围内),再找出公有的倍数,找出两个数公有的倍数,看看这些公倍数中最小的是几,这个数就是两个数的最小公倍数。

两个数公倍数的个数是无限的,因此只有最小公倍数没有的公倍数。

补充知识点:

其他找公倍数和最小公倍数的方法:

2、找两个数的公倍数和最小公倍数,可以先找出两个数中较大的数的倍数(限制一定的范围内),再看看这些倍数中有哪些也是较小的数的倍数,那么这些数就是这两个数的公倍数。其中最小的就是这两个数的最小公倍数。

例如:找6和9的公倍数和最小公倍数。(50以内)可以先找出9的倍数(50以内)有:9,18,27,36,45,再从这些数中找出6的倍数18,36,18和36就是6和9的公倍数,18是最小公倍数。

3、如果两个数是不同的质数,那么这两个数的最小公倍数是两个数的乘积。

4、如果两个数是连续的自然数(0除外),那么这两个数的最小公倍数是两个数的乘积。

5、如果两个数具有倍数关系,那么较大的数就是这两个数的最小公倍数。

6、短除法求最小公倍数

五年级下册数学数学知识点 第5篇

第三单元 长方体和正方体

1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

长方体特点:

(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

正方体特点:

(1)正方体有12条棱,它们的长度都相等。

(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。

(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。3、长方体、正方体有关棱长计算公式:

长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4

L=(a+b+h)×4

长=棱长总和÷4-宽 -高

a=L÷4-b-h

宽=棱长总和÷4-长 -高

b=L÷4-a-h

高=棱长总和÷4-长 -宽

h=L÷4-a-b

正方体的棱长总和=棱长×12

L=a×12

正方体的棱长=棱长总和÷12

a=L÷12

4、长方体或正方体6个面和总面积叫做它的表面积。

长方体的表面积=(长×宽+长×高+宽×高)×2

S=2(ab+ah+bh)

无底(或无盖)

长方体表面积= 长×宽+(长×高+宽×高)×2

S=2(ab+ah+bh)-ab

S=2(ah+bh)+ab

无底又无盖长方体表面积=(长×高+宽×高)×2

S=2(ah+bh)

贴墙纸

正方体的表面积=棱长×棱长×6 S=a×a×6 用字母表示:S= 6a2

生活实际:

油箱、罐头盒等都是6个面

游泳池、鱼缸等都只有5个面

水管、烟囱等都只有4个面。

注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)

注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。

(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。

5、物体所占空间的大小叫做物体的体积。

长方体的体积=长×宽×高 V=abh

长=体积÷宽÷高 a=V÷b÷h

宽=体积÷长÷高 b=V÷a÷h

高=体积÷长÷宽 h= V÷a÷b

正方体的体积=棱长×棱长×棱长

V=a×a×a = a3

读作“a的立方”表示3个a相乘,(即a·a·a)

长方体或正方体底面的面积叫做底面积。

长方体(或正方体)的体积=底面积×高

用字母表示:V=S h(横截面积相当于底面积,长相当于高)。

注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。

6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。

固体一般就用体积单位,计量液体的体积,如水、油等。

常用的容积单位有升和毫升也可以写成L和ml。

1升=1立方分米

1毫升=1立方厘米

1升=1000毫升

(1L = 1dm3 1ml = 1cm3)

长方体或正方体容器容积的计算方法,跟体积的计算方法相同。

但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)

注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。

(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。

形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。

排水法的公式:

V物体 =V现在-V原来

也可以 V物体 =S×(h现在- h原来)

V物体 =S×h升高

8、【体积单位换算】

大单位率=小单位

小单位÷进率=大单位

进率:1立方米=1000立方分米=1000000立方厘米(立方相邻单位进率1000)

1立方分米=1000立方厘米=1升=1000毫升

1立方厘米=1毫升

1平方米=100平方分米=10000平方厘米

1平方千米=100公顷=1000000平方米

注意:长方体与正方体关系

把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。

重量单位进率,时间单位进率,长度单位进率

大单位率=小单位

小单位÷进率=大单位

长度单位:

1千米 =1000 米 1 分米=10 厘米

1厘米=10毫米 1分米=100毫米

1米=10分米=100厘米=1000毫米

(相邻单位进率10)

面积单位:

1平方千米=100公顷

1平方米=100平方分米

1平方分米=100平方厘米

1公顷=10000平方米(平方相邻单位进率100)

质量单位:

1吨=1000千克

1千克=1000克

人民币:

1元=10角 1角=10分 1元=100分


五年级下册数学数学知识点 第6篇

把( )平均分成( )份,这样的( )份用( )表示。

分数的意义:

一个物体、一些物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。

例如

一个整体可以用自然数1表示,通常把它叫单位“1”。

把 看成单位“1”,每个 是 的1/4。

练习

每个茶杯是(这套茶杯)的( )分之( )。

每袋粽子是( )的( )分之( )。

每种颜色的跳棋是( )的( )分之( )。

阴影的方格是( )的( )分之( )。

二 分数单位

把单位“1”平均分成若干份,表示其中一份的数叫分数单位。例如 ( )的分数单位是( ),( )的分数单位是( ),( )的分数单位是( )。

三 分数与除法

思考

1、 把三个苹果平均分给2个人,每个人分几个?

2、 把1个苹果平均分给2个人,每个人分几个?

3、 把3块饼平均分给5个小朋友,每人分得多少块?

3÷5= (块)

四 分数的分类(真分数与假分数)

( ) ( ) ( )

这些分数比1大还是小?

分子比分母小的分数叫真分数。真分数小于 1。

( ) ( )

( )

这些分数比 1 大,还是比 1 小?

分子比分母大或分子和分母相等的分数叫做假分数。假分数大于 1 或等于 1。

练习

下面的分数哪些是真分数,哪些是假分数?

3/5 1/6 6/6 3/4 13/6 2/7 1

真分数 假分数

2、

3、(1)写出分母是 7的所有真分数。

(2)写出分子是7的所有假分数 。

4、下面的说法对吗? 为什么?

(1)昨天妈妈买了 1 个西瓜,我一口气吃了 5/4 个。

(2)爷爷把菜地的 2/5 种了西红柿, 3/5 种了茄子, 1/5 种了辣椒。

五年级下册数学数学知识点 第7篇

因数和倍数

1、a×b=c(a、b、c是不为0的整数),c是a和b的倍数,a和b是c的因数。

找因数的方法:

一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。

一个数的倍数的个数是无限的,最小的倍数是它本身。

2、自然数按是否是2的倍数来分:奇数 偶数

奇数:不是2的倍数

偶数:是2的倍数(0也是偶数)

最小的奇数是1,最小的偶数是

个位上是0,2,4,6,8的数都是2的倍数。

个位上是0或5的数,是5的倍数。

一个数各位上的数的和是3的倍数,这个数就是3的倍数。

能同时是2、3、5的倍数的的两位数是90,最小的三位数是120。

3、自然数按因数的个数来分:质数、合数、

质数:有且只有两个因数,1和它本身

合数:至少有三个因数,1、它本身、别的因数

1:
只有1个因数。“1”既不是质数,也不是合数。

最小的质数是2,最小的合数是4。

20以内的质数:有8个(2、3、5、7、11、13、17、19)

100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、

43、47、53、59、61、67、71、73、79、83、89、97

4、分解质因数

用短除法分解质因数 (一个合数写成几个质数相乘的形式)

5、公因数、公因数

几个数公有的因数叫这些数的公因数。其中的那个就叫它们的公因数。

用短除法求两个数或三个数的公因数 (除到互质为止,把所有的除数连乘起来)

几个数的公因数只有1,就说这几个数互质。

两数互质的特殊情况:

⑴1和任何自然数互质;⑵相邻两个自然数互质; ⑶两个质数一定互质;

⑷2和所有奇数互质; ⑸质数与比它小的合数互质;

五年级下册数学数学知识点 第8篇

1、分数数的加法和减法

(1) 同分母分数加、减法 (分母不变,分子相加减)

(2) 异分母分数加、减法 (通分后再加减)

(3) 分数加减混合运算:同整数。

(4) 结果要是最简分数

2、带分数加减法:

带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。

附:具体解释

(一)同分母分数加、减法

1、同分母分数加、减法:

同分母分数相加、减,分母不变,只把分子相加减。

2、计算的结果,能约分的要约成最简分数。

(二)异分母分数加、减法

1、分母不同,也就是分数单位不同,不能直接相加、减。

2、异分母分数的加减法:

异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算。

(三)分数加减混合运算

1、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。

在一个算式中,如果有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。

2、整数加法的交换律、结合律对分数加法同样适用。

五年级下册数学数学知识点 第9篇

1、众数:
一组数据中出现次数最多的一个数或几个数,就是这组数据的众数。

众数能够反映一组数据的集中情况。

在一组数据中,众数可能不止一个,也可能没有众数。

2、中位数:

(1)按大小排列;

(2)如果数据的个数是单数,那么最中间的那个数就是中位数;

(3)如果数据的个数是双数,那么最中间的那两个数的平均数就是中位数。

3、平均数的求法:

总数÷总份数=平均数

4、一组数据的一般水平:

(1)当一组数据中没有偏大偏小的数,也没有个别数据多次出现,用平均数表示一般水平。

(2)当一组数据中有偏大或偏小的数时,用中位数来表示一般水平。

(3)当一组数据中有个别数据多次出现,就用众数来表示一般水平。

5、平均数、中位数和众数的联系与区别:

① 平均数:

一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。

容易受极端数据的影响,表示一组数据的平均情况。

② 中位数:

将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数 。

它不受极端数据的影响,表示一组数据的一般情况。

③ 众数:

在一组数据中出现次数最多的数叫做这组数据的众数。

它不受极端数据的影响,表示一组数据的集中情况。

5、统计图:我们学过——条形统计图、复式折线统计图。

条形统计图优点:条形统计图能形象地反映出数量的多少。

折线统计图优点:折线统计图不仅能表示出数量的多少,还能反映出数量的变化情况。

注:① 画图时注意:

一“点”(描点)、 二“连”(连线)、三“标”(标数据)。

②要用不同的线段分别连接两组数据中的数。

6、 打电话:

规律——人人不闲着,每人都在传。(技巧:已知人数依次 _ 2)

(1)逐个法:所需时间最多。

(2)分组法:相对节约时间。

(3)同时进行法:最节约时间

五年级下册数学数学知识点 第10篇

轴对称:

如果一个图形沿一条直线折叠,直线两侧的图形能够互相重合,这个图形就叫做轴对称图形,这时,我们也说这个图形关于这条直线(成轴)对称。

轴对称图形的性质

把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。

轴对称的性质

经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。这样我们就得到了以下性质:

(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

(2)类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(3)线段的垂直平分线上的点与这条线段的两个端点的距离相等。

(4)对称轴是到线段两端距离相等的点的集合。

轴对称图形的作用

(1)可以通过对称轴的一边从而画出另一边;

(2)可以通过画对称轴得出的两个图形全等。

因数

整数B能整除整数A,A叫作B的倍数,B就叫做A的因数或约数。在自然数的范围内例:在算式6÷2=3中,2、3就是6的因数。

自然数的因数(举例)

6的因数有:1和6,2和3。

10的因数有:1和10,2和5。

15的因数有:1和15,3和5。

25的因数有:1和25,5。

因数的分类

除法里,如果被除数除以除数,所得的商都是自然数而没有余数,就说被除数是除数的倍数,除数和商是被除数的因数。

我们将一个合数分成几个质数相乘的形式,这样的几个质数叫做这个合数的质因数。

倍数:对于整数m,能被n整除(n/m),那么m就是n的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。

一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。

完全数:完全数又称完美数或完备数,是一些特殊的自然数。它所有的真因子(即除了自身以外的约数)的和(即因子函数),恰好等于它本身。

偶数:整数中,能够被2整除的数,叫做偶数。

奇数:整数中,能被2整除的数是偶数,不能被2整除的数是奇数,

奇数偶数的性质

关于奇数和偶数,有下面的性质:

(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;

(2)奇数跟奇数和是偶数;偶数跟奇数的和是奇数;任意多个偶数的和都是偶数;

(3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数;

(4)除2外所有的正偶数均为合数;

(5)相邻偶数最大公约数为2,最小公倍数为它们乘积的一半。

(6)奇数的积是奇数;偶数的积是偶数;奇数与偶数的积是偶数;

(7) 偶数的个位上一定是0、2、4、6、8;奇数的个位上是1、3、5、7、9。

质数:指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。

合数:比1大但不是素数的数称为合数。1和0既非素数也非合数。合数是由若干个质数相乘而得到的。

质数是合数的基础,没有质数就没有合数。

长方体:由六个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫长方体.长方体的任意一个面的对面都与它完全相同。

长、宽、高:长方体的每一个矩形都叫做长方体的面,面与面相交的线叫做长方体的棱,三条棱相交的点叫做长方体的顶点,相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

长方体的特征:

(1)长方体有6个面,每个面都是长方形,至少有两个相对的两个面完全相同。特殊情况时有两个面是正方形,其他四个面都是长方形,并且完全相同。

(2)长方体有12条棱,相对的棱长度相等。可分为三组,每一组有4条棱。还可分为四组,每一组有3条棱。

(3)长方体有8个顶点。每个顶点连接三条棱。

(4) 长方体相邻的两条棱互相(相互)垂直。

长方体的表面积

因为相对的2个面相等,所以先算上下两个面,再算前后两个面,最后算左右两个面。

设一个长方体的长、宽、高分别为a、b、c,则它的表面积S:

S = 2ab + 2bc+ 2ca

= 2 ( ab + bc + ca)

长方体的体积

长方体的体积=长×宽×高

设一个长方体的长、宽、高分别为a、b、c,则它的体积V:

V = abc=Sh

长方体的棱长

长方体的棱长之和=(长+宽+高)×4

长方体棱长字母公式C=4(a+b+c)

相对的棱长长度相等

长方体棱长分为3组,每组4条棱。每一组的棱长度相等

正方体:侧面和底面均为正方形的直平行六面体叫正方体,即棱长都相等的六面体,又称“立方体”、“正六面体”。正方体是特殊的长方体。

正方体的特征

(1)有6个面,每个面完全相同。

(2)有8个顶点。

(3)有12条棱,每条棱长度相等。

(4)相邻的两条棱互相(相互)垂直。

正方体的表面积:

因为6个面全部相等,所以正方体的表面积=一个面的面积×6=棱长×棱长×6

设一个正方体的棱长为a,则它的表面积S:

S=6×a×a或等于S=6a2

正方体的体积

正方体的体积=棱长×棱长×棱长;设一个正方体的棱长为a,则它的体积为:

V=a×a×a

正方体的展开图

正方体的平面展开图一共有11种。

分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。表示这样的一份的数叫分数单位。

分数分类:分数可以分成:真分数,假分数,带分数,百分数

真分数:分子比分母小的分数,叫做真分数。真分数小于一。如:1/2,3/5,8/9等等。真分数一般是在正数的范围内研究的。

假分数:分子大于或者等于分母的分数叫假分数,假分数大于1或等于

假分数通常可以化为带分数或整数。如果分子和分母成倍数关系,就可化为整数,如不是倍数关系,则化为带分数。

分数的基本性质:分数的分子和分母同时乘以或除以一个不为0的数,分数的值不变。

约分:把一个分数化成和它相等,但分子、分母都比较小的分数,叫做约分

公因数:在两个或两个以上的自然数中,如果它们有相同的因数,那么这些因数就叫做它们的公因数。任何两个自然数都有公因数(除零以外)而这些公因数中最大的那个称为这些正整数的最大公因数。

通分:根据分数的基本性质,把几个异分母分数化成与原来分数相等的且分母相同的分数,叫做通分。

通分方法

(1)求出原来几个分数的分母的最小公倍数

(2)根据分数的基本性质,把原来分数化成以这个最小公倍数为分母的分数

公倍数:指在两个或两个以上的自然数中,如果它们有相同的倍数,这些倍数就是它们的公倍数。这些公倍数中最小的,称为这些整数的最小公倍数

分数加减法

(1)同分母分数相加减,分母不变,即分数单位不变,分子相加减,最后要化成最简分数。

(2)异分母分数相加减,先通分,即运用分数的基本性质将异分母分数转化为同分母分数,改变其分数单位而大小不变,再按同分母分数相加减法去计算,最后要化成最简分数。

统计图:复式折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来,以折线的上升或下降来表示统计数量增减变化。折线统计图不但可以表示出数量的多少,而且还能够清楚的表示出数量增减变化的情况。

五年级下册数学数学知识点 第11篇

创设情境激发数学兴趣

创设和谐氛围,提高学习兴趣

平等、和谐、信任的师生关系,自由、宽松、民主、融洽的课堂气氛是唤起学生学习兴趣并促其主动学习的基础,也是实现主体性参与教学的前提。在教育教学中,努力创造自由、宽松、民主、平等、和谐、乐学、互相信任、心情愉悦的课堂教学氛围,使学生的个性潜能得到释放,使学生的充分自由得到发展,学生才能把精力放在学习上,愉快的学习,生动活泼地发展。

在课堂教学中,教师要尊重学生的人格,发扬教学民主,充分信任学生,给学生提供发表不同见解的机会,引导、鼓励和督促学生表达自己的感受和体会;对学困生和潜能生更要关注,多与他们沟通,不挖苦、不歧视,用真情关心、爱护他们,使他们真正感受到老师的爱,减少他们因学业成绩不理想而造成精神上的沉重压力,善于发现他们的闪光点,以促其建立自信,变“要我学”为“我要学”

精心设计问题,提高学习兴趣

问题是串成课堂的链子。因此,教师简洁而有效的课堂提问是形成有效课堂的重要因素。我们设计怎样的问题?怎样设计问题?设计的问题是否有价值、是否切合实际?只有考虑全面了才能激发学生的思维。我们常常见到这样一种现象:为了培养学生的观察能力,培养学生发现问题、发现数学的意识,教师出示主题图后,就让学生说说:“你看到了什么?你能提出什么问题?”学生就漫无边际地说,往往会兜很大的一个圈子才能绕到主题上,有时甚至回不到主题上。

这样学生的观察力、问题意识又培养了多少呢?所以教师的提问要讲究技巧:首先提问要问在当问之时。其次,提问要问在症结之处,当学生的思维受阻时,教师巧妙的发问能适当点拨学生的思维。如在教学六年级“数据世界”时,让学生估算一亿粒大米约有多少千克时,很多学生都不知从何下手,这时我提出一个问题:一千克大米大约有多少粒?然后再估算一亿粒大米有多少千克……这样的问题就会引发学生思维,引起学生的思考


五年级下册数学数学知识点 第12篇

分解质因数

用短除法分解质因数 (一个合数写成几个质数相乘的形式)

公因数、公因数

几个数公有的因数叫这些数的公因数。其中的那个就叫它们的公因数。

用短除法求两个数或三个数的公因数 (除到互质为止,把所有的除数连乘起来)

几个数的公因数只有1,就说这几个数互质。

两数互质的特殊情况

⑴1和任何自然数互质;⑵相邻两个自然数互质; ⑶两个质数一定互质;

⑷2和所有奇数互质; ⑸质数与比它小的合数互质;

公倍数、最小公倍数

几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。

用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)

用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)

如果两数是倍数关系时,那么较小的数就是它们的公因数;

较大的数就是它们的最小公倍数。

如果两数互质时,那么1就是它们的公因数

它们的积就是它们的最小公倍数。

推荐访问:

猜你喜欢