高等数学复习第1篇六、无穷级数(一)数项级数知识范围(1)数项级数数项级数的概念级数的收敛与发散级数的基本性质级数收敛的必要条件(2)正项级数收敛性的判别法比较判别法比值判别法(3)任意项级数交错级数下面是小编为大家整理的高等数学复习13篇,供大家参考。
高等数学复习 第1篇
六、无穷级数
(一)数项级数
知识范围
(1)数项级数
数项级数的概念 级数的收敛与发散 级数的基本性质 级数收敛的必要条件
(2)正项级数收敛性的判别法
比较判别法 比值判别法
(3)任意项级数
交错级数 绝对收敛 条件收敛 莱布尼茨判别法
要求
(1)理解级数收敛、发散的概念。掌握级数收敛的必要条件,了解级数的基本性质。
(2)掌握正项级数的比值判别法。会用正项级数的比较判别法。
(3)掌握几何级数、调和级数与级数的收敛性。
(4)了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法。
(二)幂级数
知识范围
(1)幂级数的概念
收敛半径 收敛区间
(2)幂级数的基本性质
(3)将简单的初等函数展开为幂级数
要求
(1)了解幂级数的概念。
(2)了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分)。
(3)掌握求幂级数的收敛半径、收敛区间(不要求讨论端点)的方法。
(4)会运用麦克劳林(Maclaurin)公式。
高等数学复习 第2篇
三、一元函数积分学
(一)不定积分
知识范围
(1)不定积分
原函数与不定积分的定义 原函数存在定理 不定积分的性质
(2)基本积分公式
(3)换元积分法
第一换元法(凑微分法) 第二换元法
(4)分部积分法
(5)一些简单有理函数的积分
要求
(1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理。
(2)熟练掌握不定积分的基本公式。
(3)熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换)。
(4)熟练掌握不定积分的分部积分法。
(5)会求简单有理函数的不定积分。
(二)定积分
知识范围
(1)定积分的概念
定积分的定义及其几何意义 可积条件
(2)定积分的性质
(3)定积分的计算
变上限积分 牛顿—莱布尼茨(Newton-Leibniz)公式 换元积分法 分部积分法
(4)无穷区间的广义积分
(5)定积分的应用
平面图形的面积 旋转体体积 物体沿直线运动时变力所作的功
要求
(1)理解定积分的概念及其几何意义,了解函数可积的条件。
(2)掌握定积分的基本性质。
(3)理解变上限积分是变上限的函数,掌握对变上限定积分求导数的方法。
(4)熟练掌握牛顿—莱布尼茨公式。
(5)掌握定积分的换元积分法与分部积分法。
(6)理解无穷区间的广义积分的概念,掌握其计算方法。
(7)掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体体积。
会用定积分求沿直线运动时变力所作的功。
四、向量代数与空间解析几何
(一)向量代数
知识范围
(1)向量的概念
向量的定义 向量的模 单位向量 向量在坐标轴上的投影 向量的坐标表示法 向量的方向余弦
(2)向量的线性运算
向量的加法 向量的减法 向量的数乘
(3)向量的数量积
二向量的夹角 二向量垂直的充分必要条件
(4)二向量的向量积 二向量平行的充分必要条件
要求
(1)理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。
(2)熟练掌握向量的线性运算、向量的数量积与向量积的计算方法。
(3)熟练掌握二向量平行、垂直的充分必要条件。
(二)平面与直线
知识范围
(1)常见的平面方程
点法式方程 一般式方程
(2)两平面的位置关系(平行、垂直和斜交)
(3)点到平面的距离
(4)空间直线方程
标准式方程(又称对称式方程或点向式方程)一般式方程 参数式方程
(5)两直线的位置关系(平行、垂直)
(6)直线与平面的位置关系(平行、垂直和直线在平面上)
要求
(1)会求平面的点法式方程、一般式方程。会判定两平面的垂直、平行。会求两平面间的夹角。
(2)会求点到平面的距离。
(3)了解直线的一般式方程,会求直线的标准式方程、参数式方程。会判定两直线平行、垂直。
(4)会判定直线与平面间的关系(垂直、平行、直线在平面上)。
(三)简单的二次曲面
知识范围
球面 母线平行于坐标轴的柱面 旋转抛物面 圆锥面 椭球面
要求
了解球面、母线平行于坐标轴的柱面、旋转抛物面、圆锥面和椭球面的方程及其图形。
高等数学复习 第3篇
五、多元函数微积分学
(一)多元函数微分学
知识范围
(1)多元函数
多元函数的定义 二元函数的几何意义 二元函数极限与连续的概念
(2)偏导数与全微分
偏导数 全微分 二阶偏导数
(3)复合函数的偏导数
(4)隐函数的偏导数
(5)二元函数的无条件极值与条件极值
要求
(1)了解多元函数的概念、二元函数的几何意义。会求二次函数的表达式及定义域。了解二元函数的极限与连续概念(对计算不作要求)。
(2)理解偏导数概念,了解偏导数的几何意义,了解全微分概念,了解全微分存在的必要条件与充分条件。
(3)掌握二元函数的一、二阶偏导数计算方法。
(4)掌握复合函数一阶偏导数的求法。
(5)会求二元函数的全微分。
(6)掌握由方程 所确定的隐函数 的一阶偏导数的计算方法。
(7)会求二元函数的无条件极值。会用拉格朗日乘数法求二元函数的条件极值。
(二)二重积分
知识范围
(1)二重积分的概念
二重积分的定义二重积分的几何意义
(2)二重积分的性质
(3)二重积分的计算
(4)二重积分的应用
要求
(1)理解二重积分的概念及其性质。
(2)掌握二重积分在直角坐标系及极坐标系下的计算方法。
(3)会用二重积分解决简单的应用问题(限于空间封闭曲面所围成的有界区域的体积、平面薄板质量)。
高等数学复习 第4篇
第一、理解概念掌握定理
数学中有很多概念。概念反映的是事物的本质,弄清楚了它是如何定义的、有什么性质,才能真正地理解一个概念。所有的问题都在理解的基础上才能做好。
定理是一个正确的命题,分为条件和结论两部分。对于定理除了要掌握它的条件和结论以外,还要搞清它的适用范围,做到有的放矢。
第二、教材习题要做熟
要特别提醒学习者的是,课本上的例题都是很典型的,有助于理解概念和掌握定理,要注意不同例题的特点和解法在理解例题的基础上作适量的习题。作题时要善于总结—— 不仅总结方法,也要总结错误。这样,作完之后才会有所收获,才能举一反三。
第三、从宏观上理清脉络
要对所学的知识有个整体的把握,及时总结知识体系,这样不仅可以加深对知识的理解,还会对进一步的学习有所帮助。
高等数学中包括微积分和立体解析几何,级数和常微分方程。其中尤以微积分的内容最为系统且在其他课程中有广泛的应用。微积分的理论,是由牛顿和莱布尼茨完成的。(当然在他们之前就已有微积分的应用,但不够系统)
数学备考一定要有一个复习时间表,也就是要有一个周密可行的计划。按照计划,循序渐进,切忌搞突击,临时抱佛脚。
高等数学复习 第5篇
试卷总分:150分
考试时间:150分钟
考试方式:闭卷,笔试
试卷内容比例:
函数、极限和连续 约15%
一元函数微分学 约25%
一元函数积分学 约20%
多元函数微积分(含向量代数与空间解析几何)约20%
无穷级数 约10%
常微分方程 约10%
试卷题型比例:
选择题 约15%
填空题 约25%
解答题 约60%
试题难易比例:
容易题 约30%
中等难度题 约50%
较难题 约20%
高等数学复习 第6篇
考研不是数学竞赛,不会出现这类题目,因此完全没必要浪费时间。每年许多考生容易在看似不起眼的选择题和填空题上失很多分。其实选择与填空题在数学考卷中所占的比重很大,这些题目的解答往往会“一失足成千古恨”,稍不留神,一步做错就全军覆没。在现阶段一定要有针对性地进行复习,所做题目的难度不能太小,当然也不能过于偏,而且复习要形成系统的知识体系结构。将做过的题目进行总结。目前阶段不要过于钻研偏题怪题。复习中,遇到比较难的题目,自己独立解决确实能显着提高能力。但复习时间毕竟有限,在确定思考不出结果时,要及时寻求帮助。一定要避免一时性起,盯住一个题目做一个晚上的冲动。要充分借助老师、同学的帮助,将题目弄通搞懂、下次自己会做即可,不要耽误太多时间。另外无论是大题还是小题,都要细心。不能说只要考场上认真,仔细地做题就不会有“会做但做错”的情况出现,应该平时做题就态度认真。
高等数学复习 第7篇
如何才能真正吸收消化这些知识以成为自己的知识呢?根据自己的总结或在权威考研辅导机构的帮助下,考生可以知道常规的题型和解题方法与技巧,考生要进行相当量的综合题型的练习。因为在复习过程中,不少考生会渐渐地有能力解答一些考研的基本题目,但如果给他一道较为综合的大题,就无从下手了。所以要做一定量的综合题。
不要现看到没做过的题就犯怵,一些大题目都是可以分解为若干个小题目去分别解答的。考生要掌握的东西就显然被分为了两个大方向。一是小题目,实质上也就是基础知识点的掌握与常规题型的熟练掌握;二是要能够将大题目拆分为小题目,也就是说能够逆出题专家的思维方式来推测此大题目是想考我们什么知识点。这两个方面的知识是考生平时复习整个过程中要加以思考的问题,因为基础知识点要不断地巩固加强,平时要多多积累将大问题细分的能力是平时的日积月累而形成的能力。祝愿考生们XX考研一切顺利,取得自己理想的成绩!加油!
高等数学复习 第8篇
二、一元函数微分学
(一)导数与微分
知识范围
(1)导数概念
导数的定义 左导数与右导数 函数在一点处可导的充分必要条件 导数的几何意义与物理意义 可导与连续的关系
(2)求导法则与导数的基本公式
导数的四则运算 反函数的导数 导数的基本公式
(3)求导方法
复合函数的求导法 隐函数的求导法 对数求导法 由参数方程确定的函数的求导法 求分段函数的导数
(4)高阶导数
高阶导数的定义 高阶导数的计算
(5)微分
微分的定义 微分与导数的关系 微分法则 一阶微分形式不变性
要求
(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法。
(2)会求曲线上一点处的切线方程与法线方程。
(3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数。
(4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。
(5)理解高阶导数的概念,会求简单函数的 阶导数。
(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。
(二)微分中值定理及导数的应用
知识范围
(1)微分中值定理
罗尔(Rolle)定理 拉格朗日(Lagrange)中值定理
(2)洛必达(L‘Hospital)法则
(3)函数增减性的判定法
(4)函数的极值与极值点 最大值与最小值
(5)曲线的凹凸性、拐点
(6)曲线的水平渐近线与铅直渐近线
要求
(1)理解罗尔定理、拉格朗日中值定理及它们的几何意义。会用罗尔定理证明方程根的存在性。会用拉格朗日中值定理证明简单的不等式。
(2)熟练掌握用洛必达法则求各种型未定式的极限的方法。
(3)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的单调性证明简单的不等式。
(4)理解函数极值的概念。掌握求函数的极值、最大值与最小值的方法,会解简单的应用问题。
(5)会判断曲线的凹凸性,会求曲线的拐点。
(6)会求曲线的水平渐近线与铅直渐近线。
(7)会作出简单函数的图形。
高等数学复习 第9篇
1、知识范围
(1)向量的概念
向量的定义、向量的模、单位向量、向量在坐标轴上的投影、向量的坐标表示法、向量的方向余弦
(2)向量的线性运算
向量的加法、向量的减法、向量的数乘
(3)向量的数量积
二向量的夹角、二向量垂直的充分必要条件
(4)二向量的向量积、二向量平行的充分必要条件
2、要求
(1)理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。
(2)熟练掌握向量的线性运算、向量的数量积与向量积的计算方法。
(3)熟练掌握二向量平行、垂直的充分必要条件。
高等数学复习 第10篇
其实数学是基础性学科,解题能力的提高,是一个长期积累的过程,因而复习时间就应适当提前,循序渐进。大致在三、四月分开始着手进行复习,如果数学基础差可以将复习的时间适当提前。复习一定要有一个可行的计划,通过计划保证复习的进度和效果。一般可以将复习分成四个阶段,每个阶段的起止时间和所要完成的任务考生应给予明确规定,以保证计划的可行性。
第一个阶段是按照考试大纲划分复习范围,在熟悉大纲的基础上对考试必备的基础知识进行系统的复习,了解考研数学的基本内容、重点、难点和特点。这个时间段一般划定为六月前。
第二个阶段是在第一阶段的基础上,做一定数量的题,重点解决解题思路的问题。一般从七月到十月。这个阶段要注意归纳总结,即拿到题后要知道从什么角度,可以分几步去求解,每道题并不要求都要写出完整步骤,只要思路有了,运算过程会做了,可以视情况而灵活掌握,这样省出时间来看更多的题。所选试题可以是历年真题,也可以是书上的练习题,但真题一定要做,而且要严格按照实考的要求去做,把握真题的特点和解题思路及运算步骤。
第三个阶段是实战训练阶段,从十一月到十二月的中旬,这也是临考前非常重要的阶段。考生要对大纲所要求的知识点做最后的梳理,熟记公式,系统地做几套模拟试卷,进行实战训练,自测复习成果。在做模拟题前先要系统记忆掌握基本公式,做题要讲究质量,既要有速度,又要有严格的步骤、格式和计算的准确性。最后阶段是考前冲刺,从十二月下旬到考试。针对在做模拟试题过程中出现的问题作最后的补习,查缺补漏,以便以最佳的状态参加考试。
数学的学习一定要每天都有个进度,每天都要有题量,我们不应该搞题海战术,但是通过做题提高实战经验也是必须的,首先有个大的学习框架,然后计划到每天,怎么去学习,每天做那方面的题,定期的查漏补缺,这样的学习才真正的有效果。
高等数学复习 第11篇
七、常微分方程
(一)一阶微分方程
知识范围
(1)微分方程的概念
微分方程的定义 阶 解 通解 初始条件 特解
(2)可分离变量的方程
(3)一阶线性方程
要求
(1)理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解。
(2)掌握可分离变量方程的解法。
(3)掌握一阶线性方程的解法。
(二)可降价方程
知识范围
(1) 型方程
(2) 型方程
要求
(1)会用降阶法解 型方程。
(2)会用降阶法解 型方程。
(三)二阶线性微分方程
知识范围
(1)二阶线性微分方程解的结构
(2)二阶常系数齐次线性微分方程
(3)二阶常系数非齐次线性微分方程
要求
(1)了解二阶线性微分方程解的结构。
(2)掌握二阶常系数齐次线性微分方程的解法。
(3)掌握二阶常系数非齐次线性微分方程的解法。
高等数学复习 第12篇
高数一考试大纲
本大纲适用于工学理学(生物科学类、地理科学类、环境科学类、心理学类等四个一级学科除外)专业的考生。
总要求考生应按本大纲的要求,了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;能运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。
本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次。
一、函数、极限和连续
(一)函数
知识范围
(1)函数的概念
函数的定义 函数的表示法 分段函数 隐函数
(2)函数的性质
单调性 奇偶性 有界性 周期性
(3)反函数
反函数的定义 反函数的图像
(4)基本初等函数
幂函数 指数函数 对数函数 三角函数 反三角函数
(5)函数的四则运算与复合运算
(6)初等函数
要求
(1)理解函数的概念。会求函数的表达式、定义域及函数值。会求分段函数的定义域、函数值,会作出简单的分段函数的图像。
(2)理解函数的单调性、奇偶性、有界性和周期性。
(3)了解函数 与其反函数 之间的关系(定义域、值域、图像),会求单调函数的反函数。
(4)熟练掌握函数的四则运算与复合运算。
(5)掌握基本初等函数的性质及其图像。
(6)了解初等函数的概念。
(7)会建立简单实际问题的函数关系式。
(二)极限
知识范围
(1)数列极限的概念
数列 数列极限的定义
(2)数列极限的性质
唯一性 有界性 四则运算法则 夹逼定理 单调有界数列极限存在定理
(3)函数极限的概念
函数在一点处极限的定义 左、右极限及其与极限的关系 趋于无穷 时函数的极限 函数极限的几何意义
(4)函数极限的性质
唯一性 四则运算法则 夹通定理
(5)无穷小量与无穷大量
无穷小量与无穷大量的定义 无穷小量与无穷大量的关系 无穷小量的性质 无穷小量的阶
(6)两个重要极限
要求
(1)理解极限的概念(对极限定义中“ ”、“ ”、“ ”等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解极限的有关性质,掌握极限的四则运算法则。
(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。
(4)熟练掌握用两个重要极限求极限的方法。
(三)连续
知识范围
(1)函数连续的概念
函数在一点处连续的定义 左连续与右连续 函数在一点处连续的充分必要条件 函数的间断点及其分类
(2)函数在一点处连续的性质
连续函数的四则运算 复合函数的连续性 反函数的连续性
(3)闭区间上连续函数的性质
有界性定理 最大值与最小值定理 介值定理(包括零点定理)
(4)初等函数的连续性
要求
(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处的连续性的方法。
(2)会求函数的间断点及确定其类型。
(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限。
高等数学复习 第13篇
知识范围
(1)函数的概念
函数的定义 函数的表示法 分段函数 隐函数
(2)函数的性质
单调性 奇偶性 有界性 周期性
(3)反函数
反函数的定义 反函数的图像
(4)基本初等函数
幂函数 指数函数 对数函数 三角函数 反三角函数
(5)函数的四则运算与复合运算
(6)初等函数
要求
(1)理解函数的概念。会求函数的表达式、定义域及函数值。会求分段函数的定义域、函数值,会作出简单的分段函数的图像。
(2)理解函数的单调性、奇偶性、有界性和周期性。
(3)了解函数 与其反函数 之间的关系(定义域、值域、图像),会求单调函数的反函数。
(4)熟练掌握函数的四则运算与复合运算。
(5)掌握基本初等函数的性质及其图像。
(6)了解初等函数的概念。
(7)会建立简单实际问题的函数关系式。
推荐访问:高等数学 复习 高等数学复习13篇 高等数学复习(通用13篇) 高等数学超详解