八年级数学上册知识点总结第1篇经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。线段垂直平分线上的点与这条线段的两个端点的距离相等与一条线段两个端点距离相等的点,在线段的垂直下面是小编为大家整理的八年级数学上册知识点总结汇编9篇,供大家参考。
八年级数学上册知识点总结 第1篇
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
线段垂直平分线上的点与这条线段的两个端点的距离相等
与一条线段两个端点距离相等的点,在线段的垂直平分线上
三、用坐标表示轴对称小结
在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.
三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等
八年级数学上册知识点总结 第2篇
第十五章 整式的乘除与分解因式
同底数幂的乘法法则: (m,n都是正数)
幂的乘方法则:(m,n都是正数)
整式的乘法
(1) 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
(3).多项式与多项式相乘
多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
平方差公式:
完全平方公式:
同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).
在应用时需要注意以下几点:
①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠
②任何不等于0的数的0次幂等于1,即,如,(),则00无意义.
③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的.
④运算要注意运算顺序.
整式的除法
单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;
多项式除以单项式: 多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.
分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.
分解因式的一般方法:
提公共因式法 运用公式法十字相乘法
分解因式的步骤:(1)先看各项有没有公因式,若有,则先提取公因式;
(2)再看能否使用公式法;
(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;
(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;
(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.
整式的乘除与分解因式这章内容知识点较多,表面看来零碎的概念和性质也较多,但实际上是密不可分的整体。在学习本章内容时,应多准备些小组合作与交流活动,培养学生推理能力、计算能力。在做题中体验数学法则、公式的简洁美、和谐美,提高做题效率。
八年级数学上册知识点总结 第3篇
把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。
把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点
3、轴对称图形和轴对称的区别与联系
轴对称的性质
①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
八年级数学上册知识点总结 第4篇
1、建立数学纠错本。做作业或复习时做错了题,一旦搞明白,决不放过,建立一本错误登记本,以降低重复性错误,不怕第一次不会,不怕第一次出错,就怕下一次还犯同样的错误把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:平时作业、课外做题及考试中,对出错的数学题建立错题集很有必要。错题集由错题、错误原因、改正措施、订正和巩固防错五项内容组成。
2、记忆数学规律和数学小结论;
3、与同学建立好关系,争做“小老师”,形成数学学习“互助组”。多看其他同学的卷纸,吸取其优良方法,借鉴错误。
4、经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。结合自身特点,寻找最佳学习方法。
5、经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,本题的分析方法与解法,在解其它问题时,是否也用到过。无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,这是学好数学的重要问题。
八年级数学上册知识点总结 第5篇
等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600。
2、等边三角形的判定:
①三个角都相等的三角形是等边三角形。
②有一个角是600的等腰三角形是等边三角形。
在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。
①、等腰三角形的性质
定理:等腰三角形的两个底角相等(简称:等边对等角)
推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。
②、等腰三角形的其他性质:
(1)等腰直角三角形的两个底角相等且等于45°
(2)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
(3)等腰三角形的三边关系:设腰长为a,底边长为b,则
(4)等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=
③、等腰三角形的判定
等腰三角形的判定定理及推论:
定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。
推论1:三个角都相等的三角形是等边三角形
推论2:有一个角是60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
④、三角形中的中位线
连接三角形两边中点的线段叫做三角形的中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
(2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
三角形中位线定理的作用:
位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:
结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
八年级数学上册知识点总结 第6篇
第十一章 三角形
一、知识框架:
知识概念:
三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.
三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.
高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.
中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.
角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.
三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.
多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.
多边形的内角:多边形相邻两边组成的角叫做它的内角.
多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.
多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对
角线.
正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.
平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用
多边形覆盖平面,
公式与性质:
⑴三角形的内角和:三角形的内角和为180°
⑵三角形外角的性质:
性质1:三角形的一个外角等于和它不相邻的两个内角的和.
性质2:三角形的一个外角大于任何一个和它不相邻的内角.
⑶多边形内角和公式:边形的内角和等于·180°
⑷多边形的外角和:多边形的外角和为360°.
⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角
线,把多边形分成个三角形.②边形共有条对角线.
第十二章 全等三角形
一、知识框架:
二、知识概念:
基本定义:
⑴全等形:能够完全重合的两个图形叫做全等形.
⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.
⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.
⑷对应边:全等三角形中互相重合的边叫做对应边.
⑸对应角:全等三角形中互相重合的角叫做对应角.
基本性质:
⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.
⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.
全等三角形的判定定理:
⑴边边边():三边对应相等的两个三角形全等.
⑵边角边():两边和它们的夹角对应相等的两个三角形全等.
⑶角边角():两角和它们的夹边对应相等的两个三角形全等.
⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等.
⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等.
角平分线:
⑴画法:
⑵性质定理:角平分线上的点到角的两边的距离相等.
⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.
证明的基本方法:
⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶
角、角平分线、中线、高、等腰三角形等所隐含的边角关系)
⑵根据题意,画出图形,并用数字符号表示已知和求证.
⑶经过分析,找出由已知推出求证的途径,写出证明过程.
第十三章 轴对称
一、知识框架:
二、知识概念:
基本概念:
⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相
重合,这个图形就叫做轴对称图形.
⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一
个图形重合,那么就说这两个图形关于这条直线对称.
⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这
条线段的垂直平分线.
⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫
做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做
底角.
⑸等边三角形:三条边都相等的三角形叫做等边三角形.
基本性质:
⑴对称的性质:
①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一
对对应点所连线段的垂直平分线.
②对称的图形都全等.
⑵线段垂直平分线的性质:
①线段垂直平分线上的点与这条线段两个端点的距离相等.
②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.
⑶关于坐标轴对称的点的坐标性质
八年级数学上册知识点总结 第7篇
第十一章 全等三角形
知识概念
全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。
全等三角形的性质:
全等三角形的对应角相等、对应边相等。
三角形全等的判定公理及推论有:
(1)“边角边”简称“SAS”
(2)“角边角”简称“ASA”
(3)“边边边”简称“SSS”
(4)“角角边”简称“AAS”
(5)斜边和直角边相等的两直角三角形(HL)。
角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。
证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).
在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。通过直观的理解和比较发现全等三角形的奥妙之处。在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。
第十二章 轴对称
知识概念
对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
性质:
(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2)角平分线上的点到角两边距离相等。
(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5)轴对称图形上对应线段相等、对应角相等。
等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)
等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
等腰三角形的判定:等角对等边。
等边三角形角的特点:三个内角相等,等于60°,
等边三角形的判定:
三个角都相等的三角形是等腰三角形。
有一个角是60°的等腰三角形是等边三角形
有两个角是60°的三角形是等边三角形。
直角三角形中,30°角所对的直角边等于斜边的一半。
直角三角形斜边上的中线等于斜边的一半。
本章内容要求学生在建立在轴对称概念的基础上,能够对生活中的图形进行分析鉴赏,亲身经历数学美,正确理解等腰三角形、等边三角形等的性质和判定,并利用这些性质来解决一些数学问题。
八年级数学上册知识点总结 第8篇
第十三章 实数
算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。
平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。
正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。
正数的立方根是正数;0的立方根是0;负数的立方根是负数。
数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0
实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。重点是实数的意义和实数的分类;实数的运算法则及运算律。
第十四章 一次函数
知识概念
一次函数:若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。
正比例函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。
正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小。
已知两点坐标求函数解析式:待定系数法
一次函数是初中学生学习函数的开始,也是今后学习其它函数知识的基石。在学习本章内容时,教师应该多从实际问题出发,引出变量,从具体到抽象的认识事物。培养学生良好的变化与对应意识,体会数形结合的思想。在教学过程中,应更加侧重于理解和运用,在解决实际问题的同时,让学习体会到数学的实用价值和乐趣。
八年级数学上册知识点总结 第9篇
1 全等三角形的对应边、对应角相等
2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
5 边边边公理(SSS) 有三边对应相等的两个三角形全等
6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
7 定理1 在角的平分线上的点到这个角的两边的距离相等
8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
9 角的平分线是到角的两边距离相等的所有点的集合
10 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
23 推论3 等边三角形的各角都相等,并且每一个角都等于60°
24 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
25 推论1 三个角都相等的三角形是等边三角形
26 推论 2 有一个角等于60°的等腰三角形是等边三角形
27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
28 直角三角形斜边上的中线等于斜边上的一半
29 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
30 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
32 定理1 关于某条直线对称的两个图形是全等形
33 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
35逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
36勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
37勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
38定理 四边形的内角和等于360°
39四边形的外角和等于360°
40多边形内角和定理 n边形的内角的和等于(n-2)×180°
41推论 任意多边的外角和等于360°
42平行四边形性质定理1 平行四边形的对角相等
43平行四边形性质定理2 平行四边形的对边相等
44推论 夹在两条平行线间的平行线段相等
45平行四边形性质定理3 平行四边形的对角线互相平分
46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
48平行四边形判定定理3 对角线互相平分的四边形是平行四边形
49平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
50矩形性质定理1 矩形的四个角都是直角
51矩形性质定理2 矩形的对角线相等
52矩形判定定理1 有三个角是直角的四边形是矩形
53矩形判定定理2 对角线相等的平行四边形是矩形
54菱形性质定理1 菱形的四条边都相等
55菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
56菱形面积=对角线乘积的一半,即S=(a×b)÷2
57菱形判定定理1 四边都相等的四边形是菱形
58菱形判定定理2 对角线互相垂直的平行四边形是菱形
59正方形性质定理1 正方形的四个角都是直角,四条边都相等
60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
61定理1 关于中心对称的两个图形是全等的
62定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
63逆定理 如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
64等腰梯形性质定理 等腰梯形在同一底上的两个角相等
65等腰梯形的两条对角线相等
66等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
67对角线相等的梯形是等腰梯形
68平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
69 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
70 推论2 经过三角形一边的中点与另一边平行的直线,必平分第
三边
71 三角形中位线定理 三角形的中位线平行于第三边,并且等于它
的一半
72 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的
一半 L=(a+b)÷2 S=L×h
73 (1)比例的基本性质 如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
74 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
75 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
76 平行线分线段成比例定理 三条平行线截两条直线,所得的对应
线段成比例
77 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
78 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
79 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
80 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
81 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
82 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
83 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
84 判定定理3 三边对应成比例,两三角形相似(SSS)
85 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
86 性质定理1 相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
87 性质定理2 相似三角形周长的比等于相似比
88 性质定理3 相似三角形面积的比等于相似比的平方
89 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
90任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
91圆是定点的距离等于定长的点的集合
92圆的内部可以看作是圆心的距离小于半径的点的集合
93圆的外部可以看作是圆心的距离大于半径的点的集合
94同圆或等圆的半径相等
95到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
96和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
97到已知角的两边距离相等的点的轨迹,是这个角的平分线
98到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线
99定理 不在同一直线上的三点确定一个圆。
100垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
101推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
102推论2 圆的两条平行弦所夹的弧相等
103圆是以圆心为对称中心的中心对称图形
104定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
105推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
106定理 一条弧所对的圆周角等于它所对的圆心角的一半
107推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
108推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所
对的弦是直径
109推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
110定理 圆的内接四边形的对角互补,并且任何一个外角都等于它
的内对角
111①直线L和⊙O相交 d
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
112切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
113切线的性质定理 圆的切线垂直于经过切点的半径
114推论1 经过圆心且垂直于切线的直线必经过切点
115推论2 经过切点且垂直于切线的直线必经过圆心
116切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,
圆心和这一点的连线平分两条切线的夹角
117圆的外切四边形的两组对边的和相等
118弦切角定理 弦切角等于它所夹的弧对的圆周角
119推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
120相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积
相等
121推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
122切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
123推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
124如果两个圆相切,那么切点一定在连心线上
125①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-rr)
④两圆内切 d=R-r(R>r) ⑤两圆内含dr)
126定理 相交两圆的连心线垂直平分两圆的公共弦
127定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
128定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
129正n边形的每个内角都等于(n-2)×180°/n
130定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
131正n边形的面积Sn=pnrn/2 p表示正n边形的周长
132正三角形面积√3a/4 a表示边长
133如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
134弧长计算公式:L=n兀R/180
135扇形面积公式:S扇形=n兀R^2/360=LR/2
136内公切线长= d-(R-r) 外公切线长= d-(R+r)
推荐访问:知识点 上册 汇编 八年级数学上册知识点总结汇编9篇 八年级数学上册知识点总结(汇编9篇) 八年级数学上册知识点大全