当前位置:舍宁秘书网 > 专题范文 > 公文范文 > 冻土区输电线路桩基础抗拔承载特性数值模拟研究

冻土区输电线路桩基础抗拔承载特性数值模拟研究

时间:2024-02-08 11:30:02 来源:网友投稿

袁 俊,赵 杰,唐 冲,甘仁钧

(1.中国电力工程顾问集团西北电力设计院有限公司,陕西 西安 710075;
2.河南中衢建筑设计有限公司,河南 郑州 450052;
3.西安建筑科技大学 土木工程学院,陕西 西安 710055;
4.大连理工大学 建设工程学部,辽宁 大连 116024;
5.国网青海省电力公司建设公司,青海 西宁 810001)

冻土是指0 ℃或0 ℃以下,并含有冰的各种岩石和土。按其生存时间,冻土可分为瞬时冻土、短时冻土、季节冻土、隔年冻土和多年冻土[1]。本文研究只涉及季节冻土和多年冻土。季节冻土通常定义为冻结持续时间不超过一年的岩土层,长江以北各省区都有季节冻土分布,约占我国陆地国土面积的一半。国际冻土协会(International Permafrost Association)将多年冻土定义为温度在0 ℃或低于0 ℃至少连续存在两年的岩土层,而多年冻土区约占我国陆地国土面积的1/5,主要分布在青藏高原、东北大小兴安岭和天山、阿尔泰山[1]。随着人类社会经济的发展,国内外(中国、加拿大、俄罗斯等)建筑、交通、能源等工程建设早已延伸至高寒冻土地区[2-12]。基础作为上部结构(房屋、桥梁、码头和其他构筑物)与岩土地基接触的承重构件,其作用是将结构自重与上部荷载传递至地基持力层。冻土区基础承载性状研究与设计是寒区工程建设的重要内容。

随着寒区工程的增多,基础建设的要求越来越高,对基础承载性能的关注也越来越多。自20世纪70年代起,国内外学者便通过现场试桩[13-23]、室内模型试验[24-32]、理论分析[33-43]与数值仿真[44-48]等技术手段,系统研究了冻土区桩基础承载性能(桩-土界面剪切特性、桩侧温度沿深度分布情况、桩基荷载-沉降曲线(桩土体系荷载传递、侧阻和端阻发挥性状的综合反映)、桩身轴力与桩侧摩阻(冻结力)、桩土相对位移等),分析了不同因素对桩基承载性能的影响规律(冻土温度变化、地下水渗流、桩型、成桩工艺、加载模式(上拔、下压或水平)、循环荷载幅值与频率等)。青藏铁路工程建设更是将冻土区基础设计理论研究与应用推向高峰。在此基础上,黄旭斌等[49]对季节冻土区桩基承载性能进行了系统总结与分析,包括桩-冻土相互作用,切向冻胀力发展机理、分布规律与取值,切向冻胀力作用下扩底桩冻胀反力与未冻区桩-融土摩阻力计算等。相关研究表明,土体冻胀产生的切向冻胀力是冻土区基础设计的重要参数。为此,张玺彦等[50]系统总结了切向冻胀力相关研究成果,包括影响因素及其分布规律,切向冻胀力测试手段、理论计算方法与设计取值等,为冻土区基础设计与施工提供了科学支持与技术保证。

相较于房屋、桥梁等建筑结构,架空输电线路基础具有距离长、区域广,地质条件复杂,地基岩土物理力学性质差异较大等特点,受力也相对更复杂,除拉/压交变荷载外,还将承受因风、导线张力、地震等引起的水平荷载与倾覆力矩作用,抗拔和抗倾覆稳定性是杆塔基础设计的控制条件之一[51]。张树良等[52]以加拿大育空和美国阿拉斯加输电工程为例,从完善工程评估机制、建立和执行相关工程建设规范与技术标准、工程建设环境风险控制以及确保工程运营安全等方面,系统总结了国外冻土地区输电工程建设相关经验,为我国开展类似工程设计和施工提供有益的借鉴。程永锋等[53]通过室内模型试验,研究了青藏铁路110 kV 输电线路冻土桩基在上拔、下压和倾覆荷载独立与组合作用下,桩侧冻结应力、桩基承载力、桩侧冻土抗力和冻土地基系数的变化规律。汪仁和等[54-55]以新疆某高压输电线路工程建设为背景,通过室内人工冻结条件下单桩静载模型试验,研究了不同冻结温度下单桩抗压、抗拔承载性状(桩身轴力、桩-土冻结强度沿桩身的分布规律,桩端阻力特性和桩顶竖向位移与荷载的关系等)。鲁先龙[56]以新疆皇吉220 kV 输电线路电网工程建设为背景,基于室内模型试验研究了上拔荷载作用下冻土地基混凝土单桩的承载性能。李明轩[57]通过室内模型试验与有限元分析,研究了不同含水率、不同冻结温度的粉质黏土中扩展板式直柱、锥柱基础抗拔承载性能(土体破坏模式、上拔荷载-位移曲线等)。张章明[58]采用数值模拟方法,分析了多年冻土区架空输电线路抗拔承载性,冻土地基力学参数取值与相关因素影响、扩展板式直柱、掏挖、桩基础上拔荷载与位移关系等。吴彤等[59]以青藏直流联网工程为背景,进行了上拔和水平力组合荷载作用下管桩基础抗拔承载性能真型载荷试验研究。

根据相关标准《冻土区架空输电线路基础设计技术规程》[60]、《冻土地区架空输电线路岩土工程勘测技术规程》[61]和中国电机工程学会2021 年度专题技术报告《青藏电力联网工程投运十年关键技术评价》[62],相较其他基础型式,桩基础可避免大面积开挖,对冻土地基热扰动小;
埋置深度和锚固长度较大可提供很大锚固力,稳定性较高;
承载性能受施工及外界气候变化影响较小。因此,桩基础是输电线路工程中最常用的基础型式之一,尤其在含冰量较高的多年冻土区[60-62]。由于工程性质的差异与电力工程行业的特殊性,冻土区输电线路桩基础的抗拔承载性能尚缺乏较为深入的研究(特别是上拔与水平荷载共同作用),对切向冻胀力发展机理、分布规律与取值,桩侧摩阻力(冻结应力)发挥性状,冻土在基础上拔破坏面的形状,基础上拔的临界深度等认知模糊不清。此外,现行规范对破裂面形态及参数采取简化处理或保守取值,导致冻土区桩基础抗拔承载力不能准确确定,对冻土区输电线路基础抗拔稳定设计造成困扰,国内外由于基础抗拔承载力不足导致工程事故时有发生。因此,本文将采用数值方法模拟分析冻土区粉质黏土、砾砂中桩基础上拔承载性能,阐明荷载-位移变化规律与桩周土体破坏模式,确定不同土质与水平荷载对桩基础抗拔承载力的影响,提出桩基础抗拔系数取值范围。尽管本文模拟工况(用冻结期与融化期的岩土参数进行简单区分)与冻土区的实际情况有所区别(未能考虑冻结与融化过程对桩体力学行为的影响),但相关成果对冻土区桩基础设计具有一定的参考价值。另外,采用有限元做冻拔问题尚处于起步阶段,本文数值模拟结果可为后续深入研究提供借鉴。

黄旭斌等[49]、张玺彦等[50]详细描述了土体冻胀与桩基础的相互作用关系(图1)。当外界温度低于0 ℃时,桩-土界面由水膜连接转变为冰膜的胶结或冻结。当土体水分达到起始冻胀含水量时,地基土体产生冻胀,破坏了土体原有的稳定结构。同时,冻土以下融土中的液态水开始向冻结锋面迁移,又加剧了土体冻胀。在此过程中,由于桩土性质不同,界面处的土体冻胀将受桩体约束不能完全冻胀,离桩越远约束就越小,超出一定距离后土体可自由冻胀。当土体冻胀产生的切向冻胀力超过冻结力时,桩基础与土体之间会产生相对滑动,将导致桩土相对滑动的最小应力定义为冻结剪切强度。基于切向冻胀力、冻结剪切强度、桩基础抗拉强度与抗拔承载力(通常由桩基自重与桩-土摩阻力提供),可产生以下几种效果:(1)桩基稳定(切向冻胀力大于冻结剪切强度,土体相对桩基滑动);
(2)桩基拉断(切向冻胀力小于冻结强度,桩基内局部拉应力大于其抗拉强度);
(3)桩基拔起(冻胀力小于冻结强度、大于承载力)。因此,在冻土区桩基础设计中,冻土层内切向冻胀力的量级需小于桩基抗拔承载力。

图1 季节冻土区桩基础-冻土相互作用机理示意图Fig.1 Representation of interaction between pile foundation and frozen soil in seasonally frozen soil regions

本文采用FLAC3D对冻土区桩基础抗拔承载性能进行数值模拟。FLAC3D是美国ITASCA 公司研发的岩土工程分析软件,可考虑岩土体蠕变、渗流与温度对地基承载性状的影响,通过“混合离散法”模拟塑性破坏和塑性流动,并采用“显式解”方案降低非线性应力-应变关系求解时间。

2.1 材料本构模型

杆塔桩基通常采用钢筋混凝土材料制成,其抗拉、抗剪强度远高于桩周土体。因此,本文将桩基视作弹性体,容 重γp=25 kN·m-3,弹性模 量Ep=30 GPa,泊松比υp=0.2。需要指出的是,模型中弹性模量取值只考虑了混凝土材料,而忽略了钢筋的作用,这是因为考虑与未考虑钢筋作用所导致的桩体弹性模量的差异对计算结果影响不大。不同于钢筋、混凝土等人工制造材料,岩土体是天然形成的复杂的地质介质。冻土是一种对温度极为敏感的土体介质,随温度周期性地发生正负变化,土体所含水分将发生相变与迁移,导致冻胀、融陷和流变等一系列复杂过程(冻融作用),进一步增加了问题复杂性。一般而言,杆塔基础埋深相对较浅,岩土地基在基础受荷过程中处于低围压状态,其应力-应变关系可用理想弹塑性模型描述。因此,本文采用基于Mohr-Coulomb 屈服准则的弹塑性模型模拟岩土地基的应力-应变关系,该模型在岩土工程数值分析中应用非常广泛。

2.2 网格划分

桩基础设计埋深为11.5 m,露头高度0.5 m,桩径1.2 m[图2(a)]。桩体混凝土设计强度等级为C30。为消除边界效应影响,模型范围取为30 m×30 m×20 m立方形区域。基于对称性,本文取1/2基础和土体进行计算,编制三维数值计算程序,以竖向(桩身轴向)为Z轴,水平向为X轴和Y轴。地基基础均采用radcylinder 圆柱形隧道外围渐变放射网格,选取cylinder 柱体网格实体单元来进行桩体的数值模拟;
按照地基土体与基础的距离来进行网格划分,划分的原则为根据距离由近到远,网格由密到疏[图2(b)]。整体计算模型共划分单元数45 682 个,节点数58 421 个。地基与基础间的滑动和开裂的模拟,则通过设置两者间界面的接触面来完成。

图2 模型计算范围(a)和有限元网格(b)Fig.2 Chosen domain of the problem analyzed(a)and mesh adopted for numerical analysis(b)

2.3 边界条件、加载方式与初始地应力

边界条件根据桩基受力特点设置如下:地表为自由面,不施加任何约束;
模型底部和四个侧面不发生变形和位移,对其水平、竖直位移与转角施加约束。桩顶施加竖直上拔的均匀面荷载,采用应力加载方式进行逐级加载(每级200 kN),直至岩土地基发生破坏——岩土体塑性区拓展至地表。桩基础施工前,土体在初始重力作用下变形已经稳定。因此,土体初始位移场设置为0。

2.4 模型验证

选取青海—西藏±400 kV 直流联网线路工程中桩基现场试验结果验证数值模型的合理性。该段输电线路北起柴达木换流站,南至拉萨换流站,全长1 038 km。该线路工程沿线平均海拔为4 500 m,最高海拔有5 300 m,不可避免地要遇到大量多年冻土问题。由于高原多年冻土物理力学性质的复杂性与空间变异性,中国科学院寒区旱区环境与工程研究所、青海省建材科学研究院联合西北电力设计院,通过冻土物理力学特性试验(抗剪强度、剪切流变、冻胀与融化压缩等)确定冻土地基的物理力学参数(黏聚力、内摩擦角、压缩系数等)[63]。试验场地位于五道梁冻土区,以红色黏土为主。根据试验结果,相关模型参数取值如表1所示。

表1 岩土地基参数取值Table 1 Parameters values of rock soil foundation

在冻结期,活动层土体发生冻胀产生切向冻胀力,作用在活动层基础侧表面上(即冻结力)。根据现场试验数据和相关资料[63],砾砂切向冻胀力约为45 kPa,冻结强度为50 kPa;
粉质黏土的单位切向冻胀力为40~60 kPa,冻结强度为40 kPa。在数值模拟过程中将单位切向冻胀力直接施加在活动层基础侧表面;
而对于冻土与基础间的抗剪强度,则通过设置地基与基础间接触面参数来完成。模拟以上拔和水平荷载作用下多年冻土区冻结期为主要工况。结果表明,数值模拟与现场试验荷载-位移曲线变化趋势相吻合(图3)。在相同荷载作用下,上拔、水平位移的计算结果与试验数据误差较小。由此可知,本文所采用的数值计算模型是准确、合理的。

图3 桩顶上拔(a)、水平(b)位移数值模拟与现场测试结果对比Fig.3 Comparison of uplift movement(a)and lateral deflection(b)from numerical analyses and load test data

将按冻结期和融化期两种工况数值模拟季节冻土区桩基抗拔承载性能,通过塑性区云图与位移云图分析桩周土体破坏模式,绘制各种工况下荷载-位移曲线确定桩基抗拔承载力,并阐明水平荷载对桩基抗拔承载力的影响。

3.1 破坏模式

(1)冻结期

桩基础在上拔荷载作用下,首先是桩顶和桩身中下部周围土体发生塑性屈服[图4(a)]。随着上拔荷载逐级增加,桩顶周围土体塑性区逐渐向下延伸,桩身中部周围土体的塑性区则向上、下两侧延伸[图4(b)]。当延伸至冻结线时,塑性区有明显的内缩现象,桩侧周围土体塑性区贯通,形成直径略大于桩径的桶桩滑动面。由图5 可知,桩基础周围土体的位移变化与塑性区的发展基本保持一致。当加载至1 800 kN 时,桩周土体形成明显的位移分界面。荷载继续增加,桩基础会因位移急剧增大导致桩-土分离,桩基被整体拔出,整个基础体系丧失承载能力。

图4 上拔荷载作用下桩周土体塑性区发展过程Fig.4 Development of plastic zone of soil around the pile under uplift loading

图5 上拔荷载作用下桩周土体位移云图Fig.5 Displacement of soil around the pile under uplift loading

(2)融化期

在上拔荷载作用下,季节冻土区融化期粉质黏土中桩基础破坏模式与冻结期类似。主要原因是施加荷载大于桩-土界面摩擦力,桩-土发生较大的竖向相对滑移,导致桩基从土体中拔出。整个破坏过程分以下三阶段:加载初期,桩-土界面顶部和中下部出现条状剪切变形;
随着荷载逐级增加,基础位移逐渐增大,桩-土界面顶部和中间发生相对滑移,形成滑移面但无明显连接;
荷载继续增加,桩身位移进一步增加,基础中部滑移面与顶部滑移面通过桩-土界面最终形成连续的滑移面,桩基础位移迅速增大,导致地基基础体系丧失承载能力。

3.2 上拔荷载-位移曲线

计算结果表明,无论是冻结期还是融化期,桩顶荷载-位移曲线均符合“缓变型”特征,即经历了“直线—曲线—直线”的非线性变化过程(图6)。相较融化期,同级上拔荷载作用下,冻结期桩基础位移更小,且两者的位移差值会随荷载增加而扩大。总体而言,冻结期桩基础抗拔承载力更大。这是因为冻结期内活动层土体发生冻结,形成了一个刚度极大的硬壳,限制下层融土层变形;
同时,冻结后土体抗剪强度要远高于融化土体。

图6 冻土区桩基础上拔荷载-位移曲线Fig.6 Uplift load-displacement curve of pile foundation in frozen soil regions

输电线路基础需承受上拔与水平荷载共同作用。为研究水平荷载对桩基抗拔承载力的影响,采用上拔和水平荷载同步作用的工况开展桩基抗拔承载性能数值分析。上拔荷载分6 级加载,而上拔与水平以同步按比例(1∶6、1∶4、1∶2)加载,其中1∶0表示无水平荷载,而1∶2、1∶4、1∶6 分别表示水平荷载为上拔荷载的1/2、1/4、1/6。相同上拔荷载作用下,桩顶竖向位移会随水平荷载增加而增大,导致桩基抗拔承载力降低[图7(a)]。为研究地基土体对季节冻土区桩基抗拔承载性能的影响,将对比分析单层砾砂、粉质黏土中桩基上拔荷载-位移曲线。计算结果表明,相较粉质黏土,砾砂土质可为基础提供更高的抗拔承载力[图7(b)]。

图7 水平荷载(a)及地基岩土性质(b)对桩基抗拔承载性能的影响Fig.7 Influence of lateral load(a)and geotechnical properties of foundation(b)on the anti-uplift capacity of pile foundation

参照上述研究框架与方法,本文还对多年冻土区桩基础抗拔承载性能进行了详细的数值模拟分析。计算结果表明:(1)多年冻土区桩基上拔承载力受地基土质影响,相较粉质黏土,砾砂可为基础提供更高的抗拔承载力;
(2)同种地基土体,相较融化期,冻结期桩基抗拔承载力更高;
(3)水平荷载导致桩基础竖向位移增加,降低其抗拔承载力。

桩基抗拔系数是指上拔、下压承载力之比。目前,各行业规范桩基抗拔系数取值并不统一。比如,《冻土地区架空输电线路基础设计技术规程》[60]规定冻土抗拔系数取0.8,非冻土抗拔系数取0.5;
而《建筑桩基技术规范》[64]将抗拔系数按砂土和黏性土、粉土两项分别取值0.5~0.7 和0.7~0.8。冻土区桩基上拔时,容易引起桩周一定范围内的土体松动,导致桩基抗拔承载力降低。冻结期活动层土体发生冻结,桩侧产生最大切向冻胀力时,增强了桩侧摩阻力。在季节冻土区活动层冻结土体会对冻结线以下的融土松动起限制作用,从而折减系数就会减小。在多年冻土区冻结期,冻结线上下土层全部冻结,形成一个整体,在上拔过程中因上拔导致土体松动的影响减小。因此,活动层厚度是影响冻土区桩基抗拔系数的一个直接因素。为了定量研究活动层厚度对桩基抗拔系数的影响,将针对砾砂和粉质黏土两类地基土,按不同活动层厚度对季节冻土区和多年冻土区桩基础分别进行抗拔和抗压承载数值模拟,分析地基土土质与活动层厚度对桩基础抗拔承载性能的影响,并根据数值模拟结果按土质与活动层厚度确定桩基础抗拔系数取值范围(表2~3)。结果表明,季节冻土区桩基础抗拔系数随活动层厚度增加而增大,多年冻土区桩基础抗拔系数随活动层厚度增加而降低。

表2 季节冻土区粉质黏土、砾砂地基中桩基础抗拔系数Table 2 Anti-uplift coefficient for pile foundation in silty clay and gravelly sand in seasonally frozen soil regions

表3 多年冻土区粉质黏土、砾砂地基中桩基础抗拔系数Table 3 Anti-uplift coefficient for pile foundation in silty clay and gravelly sand in permafrost regions

本文通过对季节冻土区和多年冻土区粉质黏土、砾砂地基中桩基础进行抗拔性能数值模拟,揭示了桩周土体塑性区与位移场的变化规律;
定量分析了地基土质、水平荷载、活动层厚度对桩基抗拔承载性能的影响;
提出了桩基础抗拔系数取值范围。主要结论如下:

(1)冻土区桩基础破坏以上拔为主,上拔荷载-位移曲线呈缓变型。同种地基土质条件下,相较融化期,冻结期桩基抗拔承载力提高20%。相较粉质黏土,砾砂地基承载力提高20%。桩顶位移随水平荷载增加而增大,导致基础抗拔承载力降低。

(2)相同地基土质条件下,多年冻土区融化期桩基抗拔系数随活动层厚度增加而减小,冻结期桩基抗拔系数最大;
季节冻土区冻结期桩基抗拔系数随活动层厚度增加而增大,融化期桩基抗拔系数最小。

猜你喜欢冻胀力多年冻土抗拔冻融循环作用下岩石含冰裂隙冻胀力演化试验研究*工程地质学报(2022年4期)2022-10-06抗拔桩在抗浮工程中的研究进展科学技术与工程(2022年17期)2022-07-28寒区隧道衬砌周边冻胀力及防治措施研究铁道勘察(2021年2期)2021-04-22吉林西部碳酸盐渍土冻胀力研究中外公路(2020年2期)2020-06-05新疆某灌区U型渠水平冻胀力变化试验研究水科学与工程技术(2019年6期)2020-01-01基坑下方既有隧道的抗拔桩抗浮技术研究四川建筑(2019年4期)2019-11-06嵌岩扩底抗拔桩承载特性现场试验研究土木与环境工程学报(2018年5期)2018-08-31太阳能制冷在多年冻土热稳定维护中的传热效果研究铁道学报(2018年5期)2018-06-21综合大学学报中国学术期刊文摘(2018年23期)2018-02-08东北多年冻土区域勘察测定要点中国新技术新产品(2016年24期)2017-02-05

推荐访问:冻土 输电 数值

猜你喜欢