当前位置:舍宁秘书网 > 思想汇报 > 2023年度数学思想与数学方法13篇(完整文档)

2023年度数学思想与数学方法13篇(完整文档)

时间:2024-05-10 16:00:04 来源:网友投稿

数学思想与数学方法第1篇其实,这本书搁置在书架上已经许久了,因为里面概念性的东西比较多,所以读起来并不是那么趣味十足,之前读了几页,便没有再读下去。之所以重读这本书,缘于这几天和学生一起收看《名师同步下面是小编为大家整理的数学思想与数学方法13篇,供大家参考。

数学思想与数学方法13篇

数学思想与数学方法 第1篇

其实,这本书搁置在书架上已经许久了,因为里面概念性的东西比较多,所以读起来并不是那么趣味十足,之前读了几页,便没有再读下去。

之所以重读这本书,缘于这几天和学生一起收看《名师同步课堂》,在电视上做六年级数学直播课的是经验丰富的鲁向前老师,我发现他在讲课的时候,特别注重数学思想方法的渗透,在这方面正是我所欠缺的。

鲁老师在讲解求体积的解决问题时,提到了把一个体积转化成另一个体积,正方体熔铸成圆柱体,小石子放入水中水面升高等等,体现了恒等变形的思想。

鲁老师特别提到一种数学思想方法,由圆柱体积的求法猜想并实验证明圆锥体积的求法,体现了类比的思想方法。类比思想是指依据两类数学对象的相似性,将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。

经常说教方法比教知识重要,作为一名数学老师,需要系统的"了解数学思想方法。所以我便想到了书架上的这本书。说实话,读这本书是有些枯燥的,而且如果你不动脑子去思考书中的问题的话,那你可能仅仅读的就是字了。

在《小学数学与数学思想方法》这本书的封皮上写着:

数学思想方法不同于一般的概念和技能,后者一般通过短期的训练便能掌握,数学思想方法的教学更应该是一个通过长期的渗透和影响才能够形成思想和方法的过程。教师应在每堂课的教学中适时、适当地体现思想方法的教学目标,使学生在潜移默化中日积月累,通过提高数学素养达到学好数学的目的。

这本书分上下两篇,上篇介绍各类思想方法,下篇介绍各类思想方法在每一册教材中的体现,这本书可以当成我们的一本工具书,在我们备课的时候,方便我们查阅。比如,在总结十以内的加减法或者乘法口诀的推导过程中,都体现了函数思想,作为老师的我们,不必让学生明确知道什么是函数思想,但是我们应该明白这里面体现了函数思想,并且有意识地向学生渗透思想方法,让学生在以后面对类似的问题,能够联想到这种思想方法去解决问题。

仅仅花费两三天的时间,匆匆读完了这本书,书中的一些思想方法或者内容,有些地方还不是太懂,需要慢慢去领悟,但是我知道,在以后备课,做教学设计时,一定要思考一个问题:这节课体现了哪些思想方法?我们应该向学生渗透哪些思想方法?为学生考虑的再长远一些。

数学思想与数学方法 第2篇

数学知识是思想方法的载体,思想方法是数学知识的进一步抽象概括,因而数学思想方法有一个特点,它并不像数学知识技能那样显而易见。我也是看了这本书,才发现小学数学课本里蕴含着这么多数学思想。我任教的是一年级,低年级学生受认知水平和数学知识的局限,教材比较注意利用操作直观等手段让学生感受或初步了解数学思想。下面我就结合自己的教学说说平时是怎样渗透数学思想的,接下来说的都是一年级下册的内容。

一、对立统一思想

书本17页《十几减5、4、3、2》做一做的题目是5+()=13,13—5=()。后面减法里算出的差就是前面一道算式的加数。充分体现了加法和减法之间的对立又统一的辩证关系。

二、分类思想

教学书本51页《摆一摆,想一想》时,用3个圆片在只有个位和十位的数位表上能摆出几个不同的数?可以有条理的思考,分为3种情况:位数上摆3个圆片的数是3,位上2个圆片的数是12,个位上1个圆片的数是21,个位上0个圆片是数是30。这样分类的摆出来的数是按照从小到大排列的。还可以这样分类:先在十位上摆3个圆片的数是30,十位上摆2个圆片的数是21,十位上摆1个圆片的数是12,十位上0个圆片的数是3。这样分类摆出来的数是按照从大到小排列的。通过分类讨论的方法,学生才能够更轻松地做到不重复,不遗漏。

在教学《认识人民币》时有一个环节是让学生对人民币进行分类,学生有的按材质进行分类,有的按人民币的单位进行分类。学生意识到人民币可以按单位来进行分类,单位最大的是元,最小的是分,才能更好地理解1元=10角,1元=10分,也为后面人民币的转换和计算奠定了基础。

三、演绎推理思想

书本41页的百数表,学生填完后。可以引导学生发现表格中是0到99这100个数,每行的十位数相同、个位数从0到9,每列的个位数相同、十位数从1到9。学生发现了这些规律后就容易填写“做一做”的题目。后来在书本91页的练习中再次出现了百数表,并让学生填写空格里的数。这个时候学生已经学习了100以内的加减法,我再次引导学生去发现百数表的规律,发现每行的数依次加1,每列的数依次加10。这样学生填空格就更加容易,又培养了学生的推理能力。

数学教学,很重要的是提高学生的思维品质。数学思想的渗透,应该是长期的,从小学一年级就要开始培养。为此,我在以后的教学中也会充分地去挖掘教材中蕴含是数学思想,提高学生的数学素养、思维水平、分析问题和解决问题的能力。

数学思想与数学方法 第3篇

数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。通过数学思想的培养,数学的能力才会有一个大幅度的提高。掌握数学思想,就是掌握数学的精髓。

1、函数方程思想

函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还需要函数与方程的互相转化、接轨,达到解决问题的目的。

笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。

函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解决问题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题、集合问题、数列问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。

函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。

2、数形结合思想

“数无形,少直观,形无数,难入微”,利用“数形结合”可使所要研究的问题化难为易,化繁为简。把代数和几何相结合,例如对几何问题用代数方法解答,对代数问题用几何方法解答,这种方法在解析几何里最常用。例如求根号((a-1)^2+(b-1)^2)+根号(a^2+(b-1)^2)+根号((a-1)^2+b^2)+根号(a^2+b^2)的最小值,就可以把它放在坐标系中,把它转化成一个点到(0,1)、(1,0)、(0,0)、(1,1)四点的距离,就可以求出它的最小值。

3、分类讨论思想

当一个问题因为某种量或图形的情况不同而有可能引起问题的结果不同时,需要对这个量或图形的各种情况进行分类讨论。比如解不等式|a-1|>4的时候,就要分类讨论a的取值情况。

4、方程思想

当一个问题可能与某个方程建立关联时,可以构造方程并对方程的性质进行研究以解决这个问题。例如证明柯西不等式的时候,就可以把柯西不等式转化成一个二次方程的判别式。

5、整体思想

从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用,整体代入、叠加叠乘处理、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中的具体运用。

6、化归思想

在于将未知的,陌生的,复杂的问题通过演绎归纳转化为已知的,熟悉的,简单的问题。三角函数,几何变换,因式分解,解析几何,微积分,乃至古代数学的尺规作图等数学理论无不渗透着转化的思想。常见的转化方式有:一般 特殊转化,等价转化,复杂 简单转化,数形转化,构造转化,联想转化,类比转化等。

转化思想亦可在狭义上称为化归思想。化归思想就是将待解决的或者难以解决的问题A经过某种转化手段,转化为有固定解决模式的或者容易解决的问题B,通过解决问题B来解决问题A的方法。

7、隐含条件思想

没有明文表述出来,但是根据已有的明文表述可以推断出来的条件,或者是没有明文表述,但是该条件是一个常规或者真理。例如一个等腰三角形,一条线段垂直于底边,那么这条线段所在的直线也平分底边和顶角。

8、类比思想

把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。

9、建模思想

为了更具科学性,逻辑性,客观性和可重复性地描述一个实际现象,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。

10、归纳推理思想

由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理称为归纳推理(简称归纳),简言之,归纳推理是由部分到整体,由个别到一般的推理

另外,还有概率统计思想等数学思想,例如概率统计思想是指通过概率统计解决一些实际问题,如摸奖的中奖率、某次考试的综合分析等等。另外,还可以用概率方法解决一些面积问题。

我来举例子~~图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆

如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

11、极限思想

极限思想是微积分的基本思想,数学分析中的一系列重要概念,如函数的连续性、导数以及定积分等等都是借助于极限来定义的。如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科”。

数学思想与数学方法 第4篇

之前一提到数学思想方法,总是感觉似乎知道一些,想过应用它来指导自己的教学,但是自身对数学思想方法的理解不深透,另外又觉得数学思想方法的渗透教学在课堂教学中短时期难以见成效。所以,本人的教学现状中对数学思想渗透的深度远远不够。

而读了《小学数学与数学思想方法》这本书,王永春老师对数学各类思想方法的梳理和对新教材思想方法的解读,让我对新课标的新理念有了更深一层的理解,对小学数学思想方法的内涵有了较为深刻的认识,明确了教材使用和课堂环节中的渗透策略。

《小学数学与数学思想方法》首先对数学数学思想方法的概念、对小学数学教学的意义、对小学数学进行教学的可行性与方法做了简介。其次,梳理了与抽象有关的数学思想:包括抽象思想、符号化思想、分类思想、集合思想、变中有不变思想、有限与无限思想;
与推理有关的数学思想:包括归纳思想、类比思想、演绎思想、转化思想、数形结合思想、几何变换思想、极限思想、代换思想;
与模型有关的数学思想包括:模型思想、方程思想、函数思想、优化思想、统计思想、随机思想;
其他数学思想方法包括:数学美思想、分析法和综合法、反证法、假设法、穷举法、数学思想方法的综合应用。最后,对小学数学1-6年级共十二册教材中数学思想方法案例进行了解读。

经过研读我发现,数学教材的教学内容始终反映着数学知识和数学思想方法这两方面,数学教材的每一章、每一节乃至每一道题,都体现着这两者的有机结合,数学思想方法有助于数学知识的理解和掌握。如本人执教的三年级下册第八单元搭配,就突出体现了分类思想、符号化思想。第一课时,我让学生体会解决排列组合问题时,就用到了分类讨论的方法有序全面的解决问题。如在用数字0、1、3、5组成没有重复数字的两位数时,多数学生没有分类有序思考,而是比较杂乱地写了组成的两位数,只有少数学生有序地书写。当我让几个学生把他们的方法展示在黑板上,引导学生交流比较后,发现,有学生漏写,有孩子写重复,其中一个孩子书写时分成三类:十位上是1的是10、13、15,十位上是3的有30、31、35,十位上是5的有50、51、53,保证有序全面地排列出来,肯定了有序思考的重要性。再次放手让学生进行组数是,半数以上的学生能又对又快地进行分类有序排列了。第二课时搭配衣服,两件不同的上衣搭配三条不同的裤子,一次各选一件,有多少种搭法,学生已经有了分类的意识,如何才能高效地解决问题呢?这时我们需要将形象的东西进行符号化,可以将衣服用几何图表示,可以用字母表示,也可以绘图表示。也有孩子用数字来表示,然后进行连线搭配,这样保证快速有效地解决问题。

由此看来,数学思想方法的渗透与运用对于数学问题的解决有十分重要的意义。在教学中不能只注重数学知识的"教学,忽视数学思想方法的教学。两条线应在课堂教学中并进,无形的数学思想将有形的数学知识贯穿始终,使教学达到事半功倍。

但是任何一种数学思想方法的学习和掌握,绝非一朝一夕的事,它需要有目的、有意识地培养,需要经历渗透、反复、不断深化的过程。只要我们在教学中对常用数学方法和重要的数学思想引起重视,大胆实践,持之以恒,有意识地运用一些数学思想方法去解决问题,学生对数学思想方法的认识才会日趋成熟,学生的数学学习才会提高到一个新的层次。

数学思想与数学方法 第5篇

之前一提到数学思想方法,总是感觉似乎知道一些,想过应用它来指导自己的教学,但是自身对数学思想方法的理解不深透,另外又觉得数学思想方法的渗透教学在课堂教学中短时期难以见成效。所以,本人的教学现状中对数学思想渗透的深度远远不够。而读了《小学数学与数学思想方法》这本书,王永春老师对数学各类思想方法的梳理和对新教材思想方法的解读,让我对新课标的新理念有了更深一层的理解,对小学数学思想方法的内涵有了较为深刻的认识,明确了教材使用和课堂环节中的渗透策略。

《小学数学与数学思想方法》首先对数学数学思想方法的概念、对小学数学教学的意义、对小学数学进行教学的可行性与方法做了简介。其次,梳理了与抽象有关的数学思想:包括抽象思想、符号化思想、分类思想、集合思想、变中有不变思想、有限与无限思想;
与推理有关的数学思想:包括归纳思想、类比思想、演绎思想、转化思想、数形结合思想、几何变换思想、极限思想、代换思想;
与模型有关的数学思想包括:模型思想、方程思想、函数思想、优化思想、统计思想、随机思想;
其他数学思想方法包括:数学美思想、分析法和综合法、反证法、假设法、穷举法、数学思想方法的综合应用。最后,对小学数学1-6年级共十二册教材中数学思想方法案例进行了解读。

经过研读我发现,数学教材的教学内容始终反映着数学知识和数学思想方法这两方面,数学教材的每一章、每一节乃至每一道题,都体现着这两者的有机结合,数学思想方法有助于数学知识的理解和掌握。如本人执教的三年级下册第八单元搭配,就突出体现了分类思想、符号化思想。第一课时,我让学生体会解决排列组合问题时,就用到了分类讨论的方法有序全面的解决问题。如在用数字0、1、3、5组成没有重复数字的两位数时,多数学生没有分类有序思考,而是比较杂乱地写了组成的两位数,只有少数学生有序地书写。当我让几个学生把他们的方法展示在黑板上,引导学生交流比较后,发现,有学生漏写,有孩子写重复,其中一个孩子书写时分成三类:十位上是1的是10、13、15,十位上是3的有30、31、35,十位上是5的有50、51、53,保证有序全面地排列出来,肯定了有序思考的重要性。再次放手让学生进行组数是,半数以上的学生能又对又快地进行分类有序排列了。第二课时搭配衣服,两件不同的上衣搭配三条不同的裤子,一次各选一件,有多少种搭法,学生已经有了分类的意识,如何才能高效地解决问题呢?这时我们需要将形象的东西进行符号化,可以将衣服用几何图表示,可以用字母表示,也可以绘图表示。也有孩子用数字来表示,然后进行连线搭配,这样保证快速有效地解决问题。

由此看来,数学思想方法的渗透与运用对于数学问题的解决有十分重要的意义。在教学中不能只注重数学知识的教学,忽视数学思想方法的教学。两条线应在课堂教学中并进,无形的数学思想将有形的数学知识贯穿始终,使教学达到事半功倍。

但是任何一种数学思想方法的学习和掌握,绝非一朝一夕的事,它需要有目的、有意识地培养,需要经历渗透、反复、不断深化的过程。只要我们在教学中对常用数学方法和重要的数学思想引起重视,大胆实践,持之以恒,有意识地运用一些数学思想方法去解决问题,学生对数学思想方法的认识才会日趋成熟,学生的数学学习才会提高到一个新的层次。

数学思想与数学方法 第6篇

为了帮助小学数学教师转变数学教育观念,提高对数学思想方法的理解和运用水平,进而提高数学专业素养,本书主编王永春于出版了专著《小学数学与数学思想方法》,该书一经出版,便受到广大小学数学教师的欢迎,参与学习活动的老师们把自己的读书心得写出来,在教学中去实践自己的学习收获,主编王永春把这些鲜活的学习体会和宝贵的教学经验案例结集出版,形成了本书,让更多的老师分享通俗而深刻的理论解读和接地气的实践经验。

本书作者王永春,作为人民教育出版社小学数学编辑室主任,长期从事小学数学教材的编写工作,致力于课程、教材的研究,对小学数学思想方法有深入的思考和探索。基于对提高教育质量、落实教育目标的强烈责任感,作者撰写了系列文章,就有关数学思想方法在小学教学中的应用作了专门的论述。在此基础上,形成了本书。

本书是《小学数学与数学思想方法》一书的读后感,是一线教师对数学思想方法的解读和教学案例的研究。因此本书的内容结构和目录与《小学数学与数学思想方法》的内容结构和目录是基本相对应的,其中第1章到第五章的"目录与《小学数学与数学思想方法》相对应,第六章教学案例部分,考虑到各年级案例分布不均,没有按照册数分节,把一、二年级分为第1节,三、四年级分为第二节,五年级分为第三节,六年级分为第四节。对学生来说,数学思想方法不同于一般的概念和技能,概念与技能通常可以通过短期的训练便能掌握,而数学思想方法则需要通过教师长期的渗透和影响才能够形成。教师应在每堂课的教学中适时、适当地体现思想方法的教学目标,使学生在潜移默化中日积月累,通过提高数学素养达到学好数学的目的。

数学思想方法不同于一般的概念和技能,后者一般通过短期的训练便能掌握,而数学思想方法需要通过在教学中长期地渗透和影响才能够形成。古语云“泰山不让土壤,故能成其大;
河海不择细流,故能就其深。”教师应在每堂课的教学中适时、适当地体现思想方法的教学目标,使学生在潜移默化中日积月累,通过提高数学素养达到学好数学的目的。希望数学思想方法的教学能够像春雨一样,滋润着学生的心田。

数学思想与数学方法 第7篇

为了帮助小学数学教师转变数学教育观念,提高对数学思想方法的理解和运用水平,进而提高数学专业素养,本书主编王永春于出版了专著《小学数学与数学思想方法》,该书一经出版,便受到广大小学数学教师的欢迎,参与学习活动的老师们把自己的写出来,在教学中去实践自己的学习收获,主编王永春把这些鲜活的学习体会和宝贵的教学经验案例结集出版,形成了本书,让更多的老师分享通俗而深刻的理论解读和接地气的实践经验。

本书作者王永春,作为人民教育出版社小学数学编辑室主任,长期从事小学数学教材的编写工作,致力于课程、教材的研究,对小学数学思想方法有深入的思考和探索。基于对提高教育质量、落实教育目标的强烈责任感,作者撰写了系列文章,就有关数学思想方法在小学教学中的应用作了专门的论述。在此基础上,形成了本书。

本书是《小学数学与数学思想方法》是一线教师对数学思想方法的解读和教学案例的研究。因此本书的内容结构和目录与《小学数学与数学思想方法》的内容结构和目录是基本相对应的,其中第1章到第五章的目录与《小学数学与数学思想方法》相对应,第六章教学案例部分,考虑到各年级案例分布不均,没有按照册数分节,把一、二年级分为第1节,三、四年级分为第二节,五年级分为第三节,六年级分为第四节。对学生来说,数学思想方法不同于一般的概念和技能,概念与技能通常可以通过短期的训练便能掌握,而数学思想方法则需要通过教师长期的渗透和影响才能够形成。教师应在每堂课的教学中适时、适当地体现思想方法的教学目标,使学生在潜移默化中日积月累,通过提高数学素养达到学好数学的目的。

数学思想方法不同于一般的概念和技能,后者一般通过短期的训练便能掌握,而数学思想方法需要通过在教学中长期地渗透和影响才能够形成。古语云“泰山不让土壤,故能成其大;
河海不择细流,故能就其深。”教师应在每堂课的教学中适时、适当地体现思想方法的教学目标,使学生在潜移默化中日积月累,通过提高数学素养达到学好数学的目的。希望数学思想方法的教学能够像春雨一样,滋润着学生的心田。

数学思想与数学方法 第8篇

今年寒假,本想在家好好地读一读书,丰富一下自己专业知识,特别是理论知识,但是受疫情的影响,心一直静不下来,专业性太强的书籍太让人烧脑了,但是一翻到王永春老师的《小学数学与数学思想方法》一书时,特别引人入胜。

全书分为上篇和下篇两部分,上篇阐述了与小学数学有关的数学思想方法,并结合案例谈思想方法的教学。下篇介绍人教版各册教材中体现的数学思想方法。在上篇中,通过王老师提供的一些案例,更加有利于读者(老师)了解和掌握思想方法;
在下篇中的教材案例解读分册编写更有利于教师使用。

通过阅读我了解到我们平时所说的“数学思想”“数学方法”“数学思想方法”不是等同的概念。数学思想是对数学知识的本质认识、理性认识。数学方法一般是指用数学解决问题时的方式和手段。而数学思想方法是对数学知识的进一步提炼概括。

数学思想较高层次的基本思想有三个:抽象思想、推理思想和模型思想。与抽象有关的数学思想主要有:抽象思想、符号化思想、分类思想、集合思想、变中有不变思想、有限与无限思想;
与推理有关的数学思想有:归纳推理、类比推理、演绎推理、转化思想、数形结合思想、几何变换思想、极限思想、代换思想;
与模型有关的数学思想有:模型思想、方程、函数思想、优化思想、统计思想、随机思想;
另外还介绍了其他数学思想方法有:数学美思想、分析法和综合法、反证法、假设法、穷举法、数学思想方法的综合应用等。

数学思想是数学方法的进一步提炼和概括,它的抽象概括程度要高一些,而数学方法的操作性更强一些。人们实现数学思想要靠一定的数学方法;
而人们选择数学方法又要以一定的数学思想为依据。可以说虽然它们有区别但是又有密切联系。

以下以《三角形内角和》为案例,谈谈我读完这本书的收获:推理是由一个或几个已知判断推出新判断的理性思维形式。推理是数学的基本思维模式,一般包括合情推理与演绎推理。合情推理是一种创造性思维过程,是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推断结果,其实质是“发现-猜想”。而演绎推理是从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算,演绎推理是从一般到特殊的推理,其本质是证明和计算。如:多边形内角和就是通过“先归纳后演绎“的推理过程。教学中先使用不完全归纳法推导出多边形内角和的计算方法,这是合情推理,接着通过将多边形分割成三角形的过程进行演绎推理,并进一步要求学生推算十边形的内角和,以及内角和是1080度的图形是几边形,引导学生将计算多边形内角和的一般方法运用到特殊情境。所以在小学生学习新知时,大多先借助合情推理在不完全归纳中理解一般原理,然后在练习和实践中演绎。在教学中要针对例题的特点引导学生经历“先归纳后演绎”的过程,从而培养推理能力。在探究规律的过程中,合情推理与演绎推理相辅相成,缺一不可。

总之在以后教学中既要教数学思想,又要设法去提高学生的思维能力和解决问题的能力,是我努力的方向。而本书是一个很好的参考书。它为我们做的分类,总结,以及列举的应用实例是一个全面而又具体的指导。仔细研读,慢慢尝试,一定有意想不到的收获。

数学思想与数学方法 第9篇

读王永春所著的《小学数学与思想方法》一书后,让我对数学学科中蕴含的数学思想有了一个系统的认识,书中对数学思想的归类总结,让我明白了数学思想的基本划分。书中列举的课本中的实例,更是我在教学中如何把握教学思想的一个重要参考。23年的教学经历,也让我对数学思想的重要性有了亲身的体会。

全书分为上篇和下篇两部分,上篇主要讲述与小学数学有关的数学思想方法,下篇是讲述义务教育人教版小学数学中的数学思想方法案例解读。全书的阅览,我更加觉得培养思维能力才是数学教学的核心目标。只有数学思想方法的教学才可以很好的培养学生的思维能力,并提高学生的解决问题的能力。

书中对有关极限的一些概念、教学要求和解题方法进行了详细的讲解。极限思想是用无限逼近的方式来研究数量的变化趋势的思想,这里抓住了两个关键语句:一个是变化的量是无穷多个,另一个是无限变化的量趋向于一个确定的常数,二者缺一不可。如自然数列是无限的,但是它趋向于无穷大,不趋向于一个确定的常数,因而自然数列没有极限。在教学中一方面要让学生体会无限,更重要的是通过具体案例让学生体会无限变化的量趋向于一个确定的常数。极限以及在此基础上定义的导数、定积分是解决用函数表达的现实问题的有力工具。有限与无限是辨证思维的一种体现,要辨证地看待二者的关系,不要用初等数学的“有限的”眼光看“无限的”问题,要用极限思想看无限,极限方法是一种处理无限变化的量的变化趋势的有力工具。换句话说,当我们面对无限的问题时,就不要再用有限的观点来思考,要进入无限的状态,数学上极限就是这么一个规则和逻辑,我们按照这个规则和逻辑去做就可以了。另外,对循环小数和无限不循环小数的理解和表示也体现了有限与无限的辩证关系。我们知道,在中学数学里一般用整数和分数来定义有理数,用无限不循环小数来定义无理数,有理数和无理数统称为实数。有理数包括整数、有限小数和循环小数。整数和有限小数化成分数是学生非常熟悉的,那么,循环小数怎样化成分数呢?我们以前曾经介绍过用方程的方法可以解决这一问题。下面我们再用极限的方法来解决。案例:把循环小数0.999…化成分数。分析:0.999…是一个循环小数,也就是说,它的小数部分的位数有限多个。对于小学生来说,能够接受的方法就是数形结合思想和极限思想的共同应用和渗透,通过构造一个直观地几何图形来描述极限思想。先看下面的数列0.9,0.09,0.009,…用数形结合的思想,把这个数列用线段构造如下:把一条长度是1的线段,先平均分成10份,取其中的9份;
然后把剩下的1份再平均分成10份,取其中的9份……所有取走的线段的长度是0.9+0.09+0.009+…=0.999…如此无限的取下去,剩下的线段长度趋向于0,取走的长度趋向于1,根据极限思想,可得0.999…=1。对于教师而言,光有极限思想的渗透是不够的,还需要进一步理解如何用极限方法来解决。这是一个无穷比递缩数列的求和问题,根据公式可得0.9+0.09+0.009+…=0.9÷(1-0.1)=1所以0.999…=1。

总之,在自己教学实践的过程中联系学过的理论知识,用这些理论知识指导我们的教学。

数学思想与数学方法 第10篇

本书作者王永春,作为人民教育出版社小学数学编辑室主任,长期从事小学数学教材的编写工作,致力于课程、教材的研究,对小学数学思想方法有深入的思考和探索。基于对提高教育质量、落实教育目标的强烈责任感,作者撰写了系列文章,就有关数学思想方法在小学教学中的应用作了专门的论述。在此基础上,形成了本书。

本书是《小学数学与数学思想方法》一书的读后感,是一线教师对数学思想方法的解读和教学案例的研究。因此本书的内容结构和目录与《小学数学与数学思想方法》的内容结构和目录是基本相对应的,其中第1章到第五章的目录与《小学数学与数学思想方法》相对应,第六章教学案例部分,考虑到各年级案例分布不均,没有按照册数分节,把一、二年级分为第1节,三、四年级分为第二节,五年级分为第三节,六年级分为第四节。对学生来说,数学思想方法不同于一般的概念和技能,概念与技能通常可以通过短期的训练便能掌握,而数学思想方法则需要通过教师长期的渗透和影响才能够形成。教师应在每堂课的教学中适时、适当地体现思想方法的教学目标,使学生在潜移默化中日积月累,通过提高数学素养达到学好数学的目的。

数学思想方法不同于一般的概念和技能,后者一般通过短期的训练便能掌握,而数学思想方法需要通过在教学中长期地渗透和影响才能够形成。古语云“泰山不让土壤,故能成其大;
河海不择细流,故能就其深。”教师应在每堂课的教学中适时、适当地体现思想方法的教学目标,使学生在潜移默化中日积月累,通过提高数学素养达到学好数学的目的。希望数学思想方法的教学能够像春雨一样,滋润着学生的心田。

数学思想与数学方法 第11篇

在转化过程中,应遵循三个原则:

1、熟悉化原则,即将陌生的问题转化为熟悉的问题;

2、简单化原则,即将复杂问题转化为简单问题;

3、直观化原则,即将抽象总是具体化.

策略一:正向向逆向转化

一个命题的题设和结论是因果关系的辨证统一,解题时,如果从下面入手思维受阻,不妨从它的正面出发,逆向思维,往往会另有捷径.

例1 :四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不共面的取法共有__________种.

A、150 B、147 C、144 D、141

分析:本题正面入手,情况复杂,若从反面去考虑,先求四点共面的取法总数再用补集思想,就简单多了.

10个点中任取4个点取法有 种,其中面ABC内的6个点中任取4点都共面有 种,同理其余3个面内也有 种,又,每条棱与相对棱中点共面也有6种,各棱中点4点共面的有3种, 不共面取法有 种,应选(D).

策略二:局部向整体的转化

从局部入手,按部就班地分析问题,是常用思维方法,但对较复杂的数学问题却需要从总体上去把握事物,不纠缠细节,从系统中去分析问题,不单打独斗.

例2:一个四面体所有棱长都是 ,四个顶点在同一球面上,则此球表面积为( )

A、 B、 C、 D、

分析:若利用正四面体外接球的性质,构造直角三角形去求解,过程冗长,容易出错,但把正四面体补形成正方体,那么正四面体,正方体的中心与其外接球的球心共一点,因为正四面体棱长为 ,所以正方体棱长为1,从而外接球半径为 ,应选(A).

策略三:未知向已知转化

又称类比转化,它是一种培养知识迁移能力的重要学习方法,解题中,若能抓住题目中已知关键信息,锁定相似性,巧妙进行类比转换,答案就会应运而生.

例3:在等差数列 中,若 ,则有等式

( 成立,类比上述性质,在等比数列 中, ,则有等式_________成立.

分析:等差数列 中, ,必有 ,故有 类比等比数列 ,因为 ,故 成立.

二、逻辑划分思想

例题1、已知集合 A= ,B= ,若B A,求实数 a 取值的集合.

解 A= :
分两种情况讨论

(1)B=¢,此时a=0;

(2)B为一元集合,B= ,此时又分两种情况讨论 :

(i) B={-1},则 =-1,a=-1

(ii)B={1},则 =1, (二级分类)

综合上述 所求集合为 .

例题2、设函数f(x)=ax -2x+2,对于满足1≤x≤4的一切x值都有f(x)≥ 0,求实数a的取值范围.

例题3、已知 ,试比较 的大小.

【分析】

于是可以知道解本题必须分类讨论,其划分点为 .

小结:分类讨论的一般步骤:

(1)明确讨论对象及对象的范围(即对哪一个参数进行讨论);

(2)确定分类标准,将P进行合理分类,标准统一、不重不漏,不越级讨论.;

(3)逐类讨论,获取阶段性结果.(化整为零,各个击破);

(4)归纳小结,综合得出结论.(主元求并,副元分类作答).

数学思想与数学方法 第12篇

每次看书我都会发现自身的问题,这次也不例外。我会对比着去发现自己哪些地方还没有做到,然后再去发现我需要学习什么。

一.不足

1.尽管课堂上我会认真帮助同学们分析每一道题,一些时候会将习题变式,但只是就题做题。可是我却忽略了向同学们传授思想方法。也就是学生只“知其然不知其所以然”。从教两年多来也算得上是一大败笔。

2.大多数授课都是将概念直接传授给学生,很少让学生去主动探索,就像书上说的一样“只注重现成结论的传授,不讲究生动过程的展示,终究会走进死胡同”。现在细想会感觉到,让学生花费一节课去探索甚至比自己讲两节课效果都要好。

3.复习时,我还按着老式传统方法,出题做题讲题......反复循环。根本就没做到在思想方法上的总结提升。

二.改进之处

1.关于符号。在低年级的时候强调同学们的直观感受,高年级时涉及到的知识就不能单纯的通过特殊例子归纳总结让他们识记了。应该通过习题让他们自己发现问题、提出问题、归纳问题、总结问题。

2.通常在做卷子或者报纸时,最后都有一道能力提升题。其中有很多习题要求归纳总结、填空或者计算,而我们通常的做法是拿住题就讲,却恰恰忘了问题的源头就是某些法则、公式或者定律。倘若我们能教给学生逆推出这样的的习题是用什么样的法则、公式或者定律而来的,那结果肯定事半功倍。

三.总结

看完前两章确实很惭愧,因为就自身而言都不能很好的将各种类型的思想方法掌握,更甭说将思想方法传授给学生了。既然发现了问题那么接下来的时间我一定好好改正,将还没有理解透彻的精髓反复研读,争取在掌握数学的思想方法这方面能够有所提升。

数学思想与数学方法 第13篇

《新课程标准》在总目标中提出:通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必须的数学知识、基本技能、基本思想、基本活动经验。这句话对于我们新教师来已经是烂熟于心,但对于这句话真正理解的少之又少,读了王永春老师的《小学数学思想与数学思想方法》之后,对这句话才有了真正的认识。“授人以鱼不如授人以渔”,对于学生而言,数学知识在其次,数学方法才是最重要的,在这本书中,王老师为我们总结了小学数学知识中蕴含的数学思想,这让我们在日常教学中可以结合所教知识很清楚地知道这些知识中蕴含了哪些数学思想方法,为我们的教学提供了指导和帮助。

这学期我任三年级数学,三年级上册中的主要思想有:第3单元“测量”中学习的长度单位:分米(dm)、毫米(mm)、千米(km)是符号化思想的应用;
第7单元“长方形和正方形”中有些习题如本书中第25页的“案例2”应用了分类思想;
第9单元“数学广角——集合”中学习的重复问题是集合思想的应用;
第8单元“分数的初步认识”中学生用一张正方形白纸可以折出不同的形状表示它的1/4。在学生充分展示后,我们可以引导学生发现虽然形状、大小不同,但都是把一张正方形白纸平均成4份,每份是它的1/4。这个教学过程中有变中有不变的思想的应用。第8单元“分数的初步认识”中把一个圆形平均分,分的份数越多,分数越小,如果一直分下去,可以对应写出无限多个分数。

生活本身是一个巨大的数学课堂,生活中客观存在着大量有价值的数学现象。指导学生运用数学知识写日记,能促使学生主动地用数学的眼光去观察生活,去思考生活问题,让生活问题数学化。在教学中注重培养孩子运用数学的意识,增强学生运用知识解决实际问题的能力。由此可见,数学并不是靠老师教会的,而是在教师的指导下,靠学生自己学会的。在教学中教师要给学生创造情景、提供机会,给学生充足的时间和空间,让学生主动探究新知,在探究中发现规律、归纳规律。因此,我们在课堂教学中,多留些时间给学生,让他们动手操作;
多留些时间给学生,自己的意见;
多留些时间给学生,让他们质疑问难。保证充分的时间和空间,让学生再课内交流、讨论、质疑。

这本书教给了我们一种教学理念,教会了我们一种教学方法。读书更是一种好的学习手段,它将带领我们不断更新、与时俱进,成为一名学生喜欢的、有专业素养的好老师。

推荐访问:数学 思想 方法 数学思想与数学方法13篇 数学思想与数学方法(集合13篇) 数学思想与数学方法有哪些

猜你喜欢